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Abstract

The efficient coding approach proposes that neural systems represent as much sensory
information as biological constraints allow. It aims at formalizing encoding as a
constrained optimal process. A different approach, that aims at formalizing decoding,
proposes that neural systems instantiate a generative model of the sensory world. Here,
we put forth a normative framework that characterizes neural systems as jointly
optimizing encoding and decoding. It takes the form of a variational autoencoder:
sensory stimuli are encoded in the noisy activity of neurons to be interpreted by a
flexible decoder; encoding must allow for an accurate stimulus reconstruction from
neural activity. Jointly, neural activity is required to represent the statistics of latent
features which are mapped by the decoder into distributions over sensory stimuli;
decoding correspondingly optimizes the accuracy of the generative model. This
framework results in a family of encoding-decoding models, which result in equally
accurate generative models, indexed by a measure of the stimulus-induced deviation of
neural activity from the prior distribution over neural activity. Each member of this
family predicts a specific relation between properties of the sensory neurons—such as
the arrangement of the tuning curve means (preferred stimuli) and widths (degrees of
selectivity) in the population—as a function of the statistics of the sensory world. Our
approach thus generalizes the efficient coding approach. Notably, here, the form of the
constraint on the optimization derives from the requirement of an accurate generative
model, while it is arbitrary in efficient coding models. Finally, we characterize the
family of models we obtain through other measures of performance, such as the error in
stimulus reconstruction. We find that a range of models admit comparable performance;
in particular, a population of sensory neurons with broad tuning curves as observed
experimentally yields both low reconstruction stimulus error and an accurate generative
model.

Introduction 1

Normative models in neuroscience describe stimulus representation and information 2

transmission in the brain in terms of optimality principles. Among these, the efficient 3
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coding principle [1] posits that neural responses are set so as to maximize the 4

information about external stimuli, subject to biological resource constraints. Despite 5

this minimal assumption, this hypothesis has been successful in predicting neural 6

responses to natural stimuli in various sensory areas [2–4]. The approach consists in 7

specifying an encoding model as a stochastic map between stimuli and neural responses. 8

The parameters of this model are then chosen so as to optimize a function that 9

quantifies the coding performance, e.g., the mutual information between stimuli and 10

neural responses. This optimization is carried out under some metabolic cost 11

proportional, e.g., to the energy needed to emit a spike [5]. The decoding process is 12

assumed to be ideal and is carried out in a Bayesian framework. Prior knowledge about 13

the environment is combined with the evidence from neural activity to form a posterior 14

belief about the stimulus [6, 7]. 15

The idea that the brain is capable of manipulating probabilities and uncertainty 16

dates back to Helmoltz’s view of perception as an inference process, in which the brain 17

learns an internal statistical model of sensory inputs [8]. Mathematically, such an 18

internal model can be formalized as a generative model in which stimuli are generated 19

by sampling from a distribution conditioned by one of a set of ‘latent,’ elementary 20

features [9, 10]. These features can be chosen so as to allow for a semantic 21

interpretation, such as oriented edges or textures in generative models of natural 22

images [11,12], but this does not have to be the case [13]. It is then assumed that the 23

role of sensory areas is to perform statistical inference by computing the posterior 24

distribution over the latent features conditioned on the sensory observation, thereby 25

‘inverting’ the internal model. This posterior distribution is assumed to be represented 26

in the neural activity, and different representation schemes have been proposed [14–16]. 27

As opposed to the efficient coding approach, which prescribes a stochastic mapping 28

from stimulus to neural activity, the generative model approach prescribes a stochastic 29

mapping from neural activity to stimulus. This mapping implies a posterior distribution 30

on neural activity, which can be read off from neural data. 31

Here, we consider an extended efficient coding approach: while, typically, only the 32

sensory encoding process is optimized, we consider jointly the encoding and decoding 33

processes. In addition to a class of encoding transformations from stimuli to neural 34

responses in a sensory area, we assume a class of generative models implemented 35

downstream. These define maps from neural activity patterns, corresponding to latent 36

variables, to distributions over stimuli. Optimality is achieved when the generative 37

distribution matches the true distribution of stimuli in the environment. If one assumes 38

that the encoder and the decoder are jointly optimized in this framework, the system 39

has the structure of a variational autoencoder (VAE) [17]. 40

Similarly to the classical efficient coding framework, here the encoder is set so as to 41

maximize a variational approximation to the mutual information between stimuli and 42

neural responses under a constraint on the neural resources. However, an important 43

aspect of this formulation is that the constraint, rather than being imposed by hand, is 44

a direct consequence of the assumption of an optimal internal model. This constraint is 45

obtained as the statistical distance between the stimulus-evoked distribution of neural 46

activity and the prior distribution of neural activity assumed by the generative model. 47

The latter, in turn, can be interpreted as the statistics of spontaneous neural 48

activity [18]; the statistical constraint can thus be viewed as the metabolic cost of 49

stimulus-induced deviations from spontaneous neural activity. 50

We apply our theoretical framework to the study of a population coding model with 51

neurons with classical, bell-shaped tuning curves. By capitalizing on recent advances in 52

the VAE literature, we solve the optimization problem as a function of the constraint on 53

neural resources: we obtain a family of solutions which yield equally satisfying 54

generative models [19]. However, these solutions make different predictions about the 55
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corresponding neural representations, which correspond to different arrangements of 56

tuning curves, statistics of prior over neural activity, and coding performances. Related 57

approaches have been explored in the literature, and predictions about the optimal 58

allocation of coding resources, i.e., the tuning curves, as a function of the stimulus 59

distribution have been derived [6, 20]. We examine how, in our framework, the optimal 60

allocation of coding resources as a function of the statistics of stimuli varies as a 61

function of the constraint. Despite the differences in the objective function, our results 62

are consistent with previous predictions in a weakly-constrained regime, while more 63

complex behaviors arise in a strongly-constrained regime. Our results illustrate how the 64

interactions between the encoder and the internal model shape neural representations of 65

sensory stimuli. 66

Decoder (generative model)Encoder (sensory representation)

..
.

PriorNeural activity patterns

: firing 
bias

: coupling
 strength

Fig 1. Model architecture. Left: encoder, or sensory representation. Neurons emit spikes according to bell-shaped
tuning curves in response to a stimulus, x, drawn from the distribution p(x) (green curve). The population response
consists in a neural activity pattern, r. Right: decoder, or generative model. The generative model maps neural activity
patterns, sampled from the prior distribution (a Boltzmann machine), qψ(r), to parameters, µ and σ, of a Gaussian
distribution over stimuli, qψ(x|r). When an activity pattern is observed, qψ(x|r) is used to obtain an estimate of the
stimulus, as well as an associated uncertainty (purple curve). The distortion term drives the system to maximize the
likelihood of the observed stimulus given the generative distribution, while the rate term penalizes deviations of the
conditional encoding distribution away from the distribution of prior distribution of neural activity of the network.

Materials and methods 67

In what follows, we denote vectors in bold font and scalars in regular font. We denote 68

by ⟨f(z)⟩p(z) the expectation of a function f of a random variable z distributed 69

June 1, 2023 3/32



according to p(z), 70

⟨f(z)⟩p(z) =
∫
dzp(z)f(z). (1)

Encoder (sensory representation) 71

We consider a population of N neurons responding to a continuous scalar stimulus, x, 72

distributed according to a prior distribution, p(x) (Fig. 1, left). In order to avoid 73

confusion with the prior distribution over neural activity patterns, q(r), defined below, 74

we will refer to p(x) as the data, or stimulus, distribution. We consider neural activity 75

in the limit of short time intervals, such that each neuron either emits one spike or is 76

silent. The set of possible activity patterns is then the set of binary vectors, 77

r = (r1, r2, ..., rN ) where ri ∈ {0, 1}; in what follows, the sum
∑

r · denotes the sum over 78

these 2N binary patterns. The encoding distribution is the conditional probability 79

distribution over neural activity patterns given the stimulus, pθ(r|x), where θ denotes 80

the set of parameters. We assume neurons to spike independently, such that 81

pθ(r|x) =
∏N
i=1 pθ(ri|x). 82

We consider the limit of small time bins of the Poisson model for spiking 83

neurons [21,22], by taking into account only the first two terms of the Poisson 84

distribution. With proper normalization, the probability of spiking of a neurons is 85

obtained as 86

pθ(ri = 1|x) = fi(x)

1 + fi(x)
, (2)

where fi(x) is the neuron’s tuning curve. We parametrize tuning curves as Gaussian 87

functions, a shape widely observed in early sensory areas, as 88

fi(x) = Ai exp

(
− (x− ci)2

2w2
i

)
, (3)

with ci the preferred stimulus of neuron i, wi the tuning width, and Ai the amplitude. 89

Thus, the probability of spiking of a neuron can be written as pθ(ri = 1|x) = S(ηi(x)), 90

with ηi(x) =
(x−ci)2
2w2

i
− logAi and S(y) = 1/(1 + exp(−y)), the logistic function. In the 91

canonical form of the exponential family, the resulting multivariate Bernoulli 92

distribution can be written as 93

pθ(r|x) = exp

(
η(x)T r−

N∑
i=1

log
(
1 + eηi(x)

))
, (4)

with η(x) = (η1(x), ..., ηN (x)) the vector of natural parameters and θ = {Ai, ci, wi}Ni=1 94

the set of parameters of the encoder. 95

Decoder (generative model) 96

We define an internal model of the environment as a generative model, by specifying a 97

parametric joint probability of neural activity patterns and sensory stimuli, qψ(r, x), 98

where ψ denotes the set of parameters (Fig. 1, right). The neural activity patterns are 99

treated as latent variables, sampled from a prior distribution, qψ(r), and mapped to a 100

distribution over stimuli, qψ(x|r). As the prior distribution does not depend on the 101

stimulus, we can interpret qψ(r) as describing the statistics of the spontaneous neural 102

activity. We model this distribution as the maximum-entropy distribution constrained 103

by the first- and second-order statistics of neural activity, a model which has been 104

proposed as a model of the distribution of activity in neural systems, e.g., in retina and 105
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in cortex [23]. In the case of binary patterns, this maximum-entropy distribution takes 106

the form of an Ising model, or Boltzmann machine, 107

qψ(r) = exp
(
hTr+ rTJr− logZ

)
, (5)

where h is the vector of biases, J is the matrix of couplings (with our choice of 108

parametrization, the diagonal elements of J vanish), and Z =
∑

r exp(h
Tr+ rTJr) is a 109

normalization constant (also called partition function). 110

On the basis of experimental findings, it has been suggested that the brain encodes 111

both a stimulus estimate and the associated uncertainty [24,25]. Thus, we model the 112

generative distribution as a Gaussian, whose mean (stimulus estimate) and variance 113

(uncertainty) are generic functions of neural activity patterns, 114

qψ(x|r) = N (µϕ(r), σϕ(r)) ; (6)

we parameterize these functions as two-layer neural networks, and we denote by ϕ the 115

set of weights and biases. The parameters of the generative distribution and of the 116

prior, ψ = {ϕ,h, J}, constitute the set of parameters of the generative model. In this 117

framework, while the encoding distribution and the prior of the generative model are 118

defined on the space neural activity patterns, the generative distribution is defined on 119

the space of stimuli, which can be related to behavioral outputs (stimulus estimate). 120

The neural network, thus, is not intended to be interpreted as a biological neural circuit, 121

but just as a flexible model of the map between neural activity and behavioral output. 122

Training objective 123

The internal model is deemed optimal when the output probability distribution, 124

qψ(x) =
∑

r qψ(x|r)qψ(r), matches the true distribution of stimuli, p(x). We achieve 125

this by setting the parameters of the generative model so as to minimize the 126

Kullback-Leibler (DKL) divergence between the data and the generative distributions, 127

min
ψ

{
DKL (p(x)||qψ(x)) = H(p)− ⟨log qψ(x)⟩p(x)

}
, (7)

where H(p), the stimulus entropy, does not depend on the parameters. (In what follows, 128

we will denote shortly this divergence by DKL(p||q)). In order to learn the optimal 129

parameters on the basis of a set of data points, we assume a two-stage 130

encoding-decoding process. The encoder maps a stimulus sample, x, to a neural activity 131

pattern, r, according to pθ(r|x). The activity pattern corresponds to a realization of the 132

latent variable in the generative model, and is mapped back (‘decoded’) to a 133

distribution over stimuli according to qψ(x|r). By including the encoder, we can rewrite 134

the second term on the right-hand-side of Eq. (7) as the sum of three terms, 135

⟨log qψ(x)⟩p(x) =
〈
DKL (pθ(r|x)||qψ(r|x))

+
∑
r

pθ(r|x) log qψ(x|r)−DKL (pθ(r|x)||qψ(r))
〉
p(x)

.
(8)

The first term in the sum involves the posterior distribution over neural activity 136

patterns, qψ(r|x) = qψ(x|r)qψ(r)/qψ(x); calculating qψ(x) requires summing over all 137

patterns of activity, r, which is computationally prohibitive. Instead, we use the fact 138

that the DKL divergence is positive, and vanishes only when the two distributions are 139

identical, to convert Eq. (8) into an inequality, 140

⟨log qψ(x)⟩p(x) ≥

〈∑
r

pθ(r|x) log qψ(x|r)−DKL (pθ(r|x)||qψ(r))

〉
p(x)

. (9)

June 1, 2023 5/32



Since the generative distribution, log qψ(x), is often referred to as the ‘evidence’ for a 141

data point, x, the quantity on the right hand side of Eq. (9) goes by the name of 142

‘evidence lower bound’ (ELBO). We note that the maximum value of the ELBO 143

corresponds to minus the stimulus entropy, yielding a vanishing DKL divergence in Eq. 144

(7). 145

We can then address a variational approximation to the problem in Eq. (7) by 146

maximizing the ELBO. Equivalently, we can optimize the encoder and decoder 147

parameters so as to the minimize the negative ELBO, written as the sum of two terms, 148

min
{ψ,θ}

{−ELBO = D +R} ; (10)

borrowing the nomenclature from rate-distortion theory, we call distortion the quantity 149

D =

〈
−
∑
r

pθ(r|x) log qψ(x|r)

〉
p(x)

, (11)

equal to the opposite of the first term on the right-hand-side of Eq. (9), which measures 150

the average log-probability of a stimulus, x, after the encoding-decoding process, and 151

rate the quantity 152

R = ⟨DKL (pθ(r|x)||qψ(r))⟩p(x) =

〈∑
r

pθ(r|x) log
(
pθ(r|x)
qψ(r)

)〉
p(x)

, (12)

equal to the opposite of the second term, which measures the statistical distance 153

between the encoding distribution and the prior assumed by the generative model. This 154

framework goes by the name of variational autoencoder (VAE) [17]. As one typically 155

does not have access to the true data distribution, but only to a set of samples, the 156

average over p(x) is approximated by an empirical average over a set of P samples, 157

⟨f(x)⟩p(x) ≈
∑P
i=1 f(xi)/P . 158

We note that, due to the fact that the variance of the generative distribution depends 159

on the neural responses, the distortion differs from the more usual mean squared error 160

(MSE) loss function of classical autoencoders, also commonly employed to measure the 161

performance of neural codes. Indeed, here the distortion function is written as 162

D =

〈∑
r

p(r|x)

(
(µϕ (r)− x)2

2σ2
ϕ(r)

+
1

2
log
(
2πσ2

ϕ(r)
))〉

p(x)

, (13)

while the MSE is obtained as 163

ε2 =

〈∑
r

p(r|x) (µϕ (r)− x)2
〉
p(x)

, (14)

where we have used the fact that the optimal estimator is given by the mean of the 164

posterior. 165

In a Bayesian framework, if q(x|r) is an accurate approximation of the posterior 166

distribution of stimulus given neural responses, its mean approximates the minimum 167

MSE estimate. In the Results section, we also consider the MSE obtained when the 168

stimulus estimate, x̂, is sampled from the posterior distribution, x̂ ∼ q(x̂|r), as 169

ε2sampling =

〈∑
r

p(r|x)
∫
dx̂q(x̂|r) (x̂− x)2

〉
p(x)

=

〈∑
r

p(r|x)
[
(µϕ(r)− x)2 + σ2

ϕ(r)
]〉

p(x)

.

(15)
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Constrained optimization and connection with efficient coding 170

It is a known issue in the VAE literature that, when the generative distribution is 171

flexible given the data distribution (meaning that qψ(x|r) has enough degrees of freedom 172

to approximate complex distributions), the ELBO optimization problem exhibits 173

multiple solutions (Fig. 3). Optimization algorithms based on stochastic gradient 174

descent are biased towards solutions with low rate and high distortion, a phenomenon 175

which goes by the name of posterior collapse [19,26]. In the extreme case, the model 176

relies entirely on the power of the decoder and ignores the latent variables altogether: all 177

realizations of the latent variables are mapped to the data distribution, qψ(x|r) ≈ p(x), 178

and, consequently, all stimuli are mapped to the same representation, pθ(r|x) ≈ qψ(r). 179

We overcome this issue by addressing a related constrained optimization problem. 180

We minimize the distortion subject to a maximum, or ‘target,’ value of the rate, R̄: 181

min
{θ,ψ}

D

subject to R ≤ R̄.
(16)

The set of parameters {θ, ψ} that satisfy the constraint R ≤ R̄ is called feasible set. By 182

writing the associated Lagrangian function with multiplier β ≥ 0, we have that 183

max
β≥0

{
L(θ, ψ, β) = D + β(R− R̄)

}
=

{
D if {θ, ψ} is feasible
∞ otherwise

. (17)

Solutions of Eq. (16) can thus be found as solutions to the ‘minimax’ problem, 184

min
{θ,ψ}

max
β≥0

{
L(θ, ψ, β) = D + β(R− R̄)

}
. (18)

The Lagrangian has a form similar to that of the negative ELBO, with an additional β 185

factor multiplying the rate; this framework was presented as an extension of the classical 186

VAE, with the aim of obtaining disentangled latent representations, in Refs. [19, 27]. 187

Before addressing the optimization problem, we note that the two terms contributing 188

to the ELBO are related to the mutual information of stimuli and neural responses, 189

Ip(r, x) =

〈
log

pθ(r, x)

p(x)pθ(r)

〉
pθ(r,x)

, (19)

through the bounds 190

H(p)−D ≤ Ip(r, x) ≤ R, (20)

where H(p) is the entropy of the stimulus distribution [19]. The two inequalities arise 191

because in the variational approximation the posterior over stimuli, qψ(x|r), replaces 192

pθ(x|r), and the prior over activity patterns, qψ(r), replaces pθ(r), respectively. Since we 193

are considering continuous stimuli, H is a differential entropy, and is thus defined up to 194

a constant, and D can take negative values. Below, we will illustrate the properties of 195

the generative model also through the DKL divergence, Eq. (7), which is non-negative. 196

Equation (20) has two important consequences. First, it allows us to interpret the 197

problem in Eq. (16) as an efficient coding problem, where the objective is to maximize 198

a lower bound to the mutual information, H −D, subject to a bound on the neural 199

resources, R̄. Contrary to the classical efficient coding literature, in which a metabolic 200

constraint is imposed by hand, here it results from the original formulation of the 201

problem as optimization of the ELBO, and it is affected by the assumptions made on 202

the generative model (more specifically, on the prior distribution). 203

Second, it prescribes a bound on the solutions of Eq. (16). If the variational 204

distributions, qψ(r) and qψ(x|r), are flexible enough to approximate pθ(r) and pθ(x|r), 205
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we can achieve both inequalities, and we have D = H −R. Along this line in the 206

rate-distortion plane, the negative ELBO achieves its minimum value, equal to the 207

stimulus entropy. 208

We address the minimax problem of Eq. (18) numerically through a two-timescale 209

alternated stochastic gradient descent-ascent, Alg. 1. We denote by {θ∗, ψ∗, β∗} the 210

optimal parameters. If the Lagrangian function is convex in the parameters {θ, ψ}, then 211

the algorithm converges to a saddle point [28], i.e., we have 212

L(θ∗, ψ∗, β) ≤ L(θ∗, ψ∗, β∗) ≤ L(θ, ψ, β∗), (21)

for all feasible parameters and β ≥ 0. According to the saddle point theorem (see, 213

e.g., [29]), Eq. (21) implies that {θ∗, ψ∗} is a solution of the problem defined in Eq. 214

(16). The convergence properties in the general case with L possibly non convex in the 215

parameters, but concave in β, are the object of ongoing research; Ref. [30] shows that a 216

gradient descent-ascent algorithm converges to a stationary point of the function 217

g(·) = maxβ≥0 L(·, β). 218

Solutions of Eq. (18) obey β∗(R(θ∗, ψ∗)− R̄) = 0, i.e., if β∗ > 0, the constraint on 219

the rate is satisfied as an equality, R = R̄ (this mechanisms is also known as the 220

complementarity slackness in the Karush–Kuhn–Tucker conditions [31]). Moreover, if 221

the solution is a differentiable point and a saddle point (or, more generally, a stationary 222

point) of the Lagrangian, we have that dD
dR̄

∣∣
θ∗,ψ∗ = −β∗. (This can be shown by noting 223

that 224

dL

dR̄

∣∣∣∣
θ∗,ψ∗

=
dD

dR̄

∣∣∣∣
θ∗,ψ∗

, (22)

and that 225

dL

dR̄

∣∣∣∣
θ∗,ψ∗,β∗

=
∂θ

∂R̄

∂L

∂θ

∣∣∣∣
θ∗,ψ∗,β∗

+
∂ψ

∂R̄

∂L

∂ψ

∣∣∣∣
θ∗,ψ∗,β∗

+
∂β

∂R̄

∂L

∂β

∣∣∣∣
θ∗,ψ∗,β∗

+
∂L

∂R̄

∣∣∣∣
θ∗,ψ∗,β∗

= −β∗,

(23)

since the partial derivatives evaluated at the stationary points vanish.) 226

If the stationarity condition is satisfied and we find β∗ = 1 as a result of our 227

optimization scheme, then it is possible to show, under some assumptions, that the 228

parameters {θ∗, ψ∗} maximize the ELBO. This is obviously true if the solution belongs 229

to the line D = H −R, where the ELBO achieves its upper bound. In general, β∗ = 1 230

implies that the ELBO is optimized if the distortion-rate curve, D(R̄) (i.e., the curve 231

defined by the solutions of Eq. (16) as a function of R̄), is convex. This observation can 232

be proved with a simple geometric argument. We denote by R̄1 the point at which we 233

have dD/dR̄ = −1; at this point, the tangent line to the distortion-rate curve is defined 234

by D = −ELBO1 − R̄ , with −ELBO1 = D(R̄1) + R̄1, as the constraint is satisfied as 235

an equality, R(R̄1) = R̄1. The convexity of the distortion-rate function implies that it 236

lies above this tangent line. Indeed, the convexity property implies that 237

D(λR̄1 + (1− λ)R̄2) ≤ λD(R̄1) + (1− λ)D(R̄2), (24)

with 0 < λ < 1. We now assume, without loss of generality, R̄1 < R̄2. By subtracting 238

D(R̄1) and dividing both sides in Eq. (24) by (1− λ)(R̄2 − R̄1) < 0, we obtain 239

D
(
λR̄1 + (1− λ)R̄2

)
−D(R̄1)(

λR̄1 + (1− λ)R̄2

)
− R̄1

≥
(1− λ)

(
D(R̄2)−D(R̄1)

)
(1− λ)(R̄2 − R̄1)

; (25)

we now take the limit λ→ 1, which yields 240

dD

dR̄

∣∣∣∣
R̄1

= −β∗(R̄1) ≥
D(R̄2)−D(R̄1)

R̄2 − R̄1
. (26)
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Finally, by rearranging the terms, we obtain 241

D(R̄1) + R̄1 = −ELBO1 ≤ D(R̄2) + R̄2, (27)

where we have used β∗(R̄1) = 1. We now define the negative ELBO at R̄2, 242

−ELBO2 = D(R̄2) +R(R̄2). Equation (27) directly implies that ELBO1 ≥ ELBO2 243

when the constraint is satisfied as an equality, R(R̄2) = R̄2. Instead, when R(R̄2) < R̄2, 244

we can consider the problem defined in Eq. (16) with R̄3 = R(R̄2). In this case, we have 245

D(R̄2) = D(R̄3) and, since D(R̄2) is achieved when R = R̄3, the constraint is satisfied 246

as an equality, R(R̄3) = R̄3; thus, Eq. (27) implies ELBO1 ≥ ELBO2 = ELBO3. This 247

proves that R̄1 maximizes the ELBO.

Algorithm 1 Two-timescale optimization algorithm.

1: Inputs: target rate R̄, dataset D
2: Initialize: β = 1, encoder/decoder parameters= {θi, ψi}
3: while convergence do
4: Define β-ELBO: Lβ = D + βR
5: for batch in D do
6: Update parameters: (θ, ψ)← Adam (∇θLβ(batch),∇ψLβ(batch))
7: end for
8: β → max{β + ηβ(R− R̄), 0}
9: end while

10: return

248

Numerical optimization and related computations 249

Numerical simulations are carried out using PyTorch. We solve the optimization 250

problem in Eq. (18) through stochastic gradient descent on the loss on a dataset with 251

P = 5000 samples from p(x), divided in minibatches of size 128, with the Adam 252

optimizer [32] with learning rate equal to 10−4 and otherwise standard hyperparameters. 253

The learning rate for β, ηβ , is set to 0.1. The training is iterated over multiple passes 254

over the data (epochs) with a maximum of 5000 epochs and it is stopped when the 255

training loss running average remains unchanged (with a tolerance of 10−5) for 100 256

consecutive epochs. The parameters are initialized as follows. The preferred positions, 257

ci, are initialized as the centroids obtained by applying a k-means clustering algorithm 258

(with k = N) to the set of stimuli in the dataset. Tuning widths are initialized by 259

setting wi = |ci − cj |, with cj the closest preferred position to ci, and the amplitude is 260

set equal to 1, corresponding to a maximum probability of spiking of 0.5. Random noise 261

of small variance is then applied to the initial value of the parameters. We illustrate 262

results obtained by averaging over different random initializations. An example of the 263

evolution of D, R, and β during training is illustrated in Fig. 2. 264

We illustrate results for N small enough so that it be possible to compute explicitly 265

the sums over activity patterns appearing in the loss function. This also allows us to 266

explore regimes in which the information is compressed in the activity of a finite 267

population of neurons. In Sec. Supporting information, we discuss the numerical issues 268

encountered when the population size is large, and we mention proposed solutions. 269

Results 270

We optimize jointly an encoder, a population of neurons with simple tuning curves 271

which stochastically maps stimuli to neural activity patterns, and a decoder, a neural 272
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Fig 2. Example of training. p(x) = Lognormal(1, 1), N = 12, R̄ = 1.32 (A) Evolution of negative ELBO, and
the two terms, D and R, with training epochs. Plot in log-log scale. (B) Joint evolution of R and D in the
rate-distortion plane, colored according to the epoch (increasing from blue to yellow, colors in logarithmic scale). (C)
Evolution of β during training.

network which maps activity patterns, interpreted as latent variables, to distributions 273

over stimuli. The system is set so as to minimize a bound to the Kullback-Leibler (DKL) 274

divergence between the generative distribution and the true distribution of stimuli (Fig. 275

1). By formulating the training objective as a constrained optimization problem, we 276

characterize the space of optimal solutions as a function of the value of the constraint; 277

we then discuss the properties of the encoder and of the decoder in the family of 278

solutions. 279

Degeneracy of optimal solutions 280

We begin by illustrating two alternative solutions of the ELBO optimization problem, 281

Eq. (10), characterized by different contributions of the two terms, D and R. We first 282

consider the simple, but instructive, case of a Gaussian distribution over stimuli, 283

p(x) = N
(
µp, σ

2
p

)
. In order to minimize the rate, a possible solution is to set the 284

parameters of the encoder so as to map all stimuli to the same distribution over neural 285

activity patterns, which takes a similar form as the prior distribution, pθ(r|x) ≈ qψ(r). 286

This is achieved through neurons with low selectivity, i.e., with broad and overlapping 287

tuning curves (Fig. 3A, top). Despite the non-informative neural representation, a 288

perfect generative model is obtained (in this special, Gaussian case) by mapping all 289

activity patterns to the parameters of the data distribution, µψ(r) = µp and σ2
ψ(r) = σ2

p 290

for all r; in this way, the generative distribution becomes independent from the neural 291

activity, qψ(x|r) ≈ p(x) (Fig. 3B, top). The rate term is then negligible and the 292

distortion is equal to the stimulus entropy, thereby satisfying the leftward inequality in 293

Eq. (20). The sum of the two terms is equal to the stimulus entropy, the lower bound of 294

the negative ELBO; the neural representation, however, retains no information about 295

the stimulus. 296

At the opposite extreme, it is possible to minimize the distortion by learning an 297

injective encoding map that associates distinct stimuli to distinct activity patterns. The 298

decoder can then map each activity pattern to a narrow Gaussian distribution over 299

stimuli. In our framework, this is achieved through narrow and non-overlapping tuning 300

curves that tile the stimulus space (Fig. 3A, bottom). For a given encoding distribution, 301
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Fig 3. Qualitatively different optimal configurations. In all simulations, N = 10 and p(x) = N (0, 5). Top row:
high-distortion, low-rate solution. Bottom row: low-distortion, high-rate solution. (A) Bell-shaped tuning curves of
the encoder (probability of neuron i to emit a spike, as a function of x). (B) Comparison between the stimulus
distribution, p(x) (green curve), and the generative distribution, q(x) =

∑
r q(x|r)q(r) (purple curve). (C) Numerical

values of the ELBO, and the distortion and rate terms.

the optimal prior distribution which minimizes the rate, Eq. (12), is equal to the 302

marginal encoding distribution, 303

qψ∗(r) = ⟨pθ(r|x)⟩p(x) . (28)

(See Ref. [33] for an application of this optimal prior in the context of VAEs.) If the 304

encoding distribution is different for each stimulus, the rate term does not vanish, but, 305

numerically, we find that the parameters of the prior can still be set so as to 306

approximate Eq. (28), achieving the rightward inequality in Eq. (20). As a consequence, 307

the negative ELBO again achieves its lower bound, and it is possible to obtain a 308

generative model that approximates closely the stimulus distribution, though less 309

smoothly (Fig. 3B, bottom). 310

Thus, although these two solutions yield comparable values of the ELBO (Fig. 1C) 311

and equally accurate generative models, the corresponding neural representations are 312

utterly different. This case is special and contrived, because the conditional generative 313

distribution has the same functional form as the stimulus distribution, and thus a 314

perfect generative model is obtained even when it ignores the latent variables. However, 315

the reasoning extends to more complex cases, and the choice of the forms of the 316

decoding distribution and the prior determines the ability of the system to optimize the 317

ELBO in different ways [19]. In order to achieve an optimal distortion at low rates, the 318

generative distribution must be complex enough to approximate the data distribution 319
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even when the latent variables carry no information about the stimulus. Conversely, 320

prior distributions which can fit marginal encoding distributions in which each data 321

point is mapped precisely to a realization of the latent variables, achieve the optimal 322

values of the rate at low values of the distortion. Indeed, as we show next, we observe 323

the existence of multiple solutions of the ELBO optimization problem also for more 324

complex stimulus distributions. 325

Analysis of the family of optimal solutions 326

We explore systematically the space of solutions which optimize the ELBO by 327

minimizing the distortion subject to a constraint on the maximum (‘target’) value of the 328

rate, R̄, a formulation which yields a generalized objective function (Eq. (18)) with a 329

factor β that weighs the rate term (see Methods). The value of R̄ is an upper bound to 330

the mutual information between stimulus and neural response; it thereby imposes a 331

degree of ‘compression’ of the information in the encoding process. We illustrate results 332

for the simple, yet non-trivial, choice of a log-normal stimulus distribution, which 333

exhibits a similar degeneracy as the simple described above (Fig. S1). Similar 334

observations are valid for other distributions as well: in Fig. S2 we illustrate the case of 335

a more complex, multimodal distribution. 336

Each solution is associated with a point (R̄,D) in the rate-distortion plane. By 337

varying the value of R̄, we trace the curve of the optimal distortion as a function of the 338

target rate (Fig. 4A). We focus on the range of values of R̄ resulting in β∗ = 1, for 339

which R = R̄ and the corresponding solutions also yield an optimal value of the ELBO 340

(shaded grey area). These solutions fall on the line D = H(p)−R, with H(p) the 341

stimulus entropy, such that both inequalities in Eq. (20) are achieved; as a result, the 342

mutual information is equal to R̄ (Fig. 4A, inset). Deviations from this line appear for 343

extreme values of the target rate. On the one hand, as the stimulus and the generative 344

distributions do not belong to the same parametric family, it is not possible to achieve 345

an optimal distortion with R = 0. On the other hand, for sufficiently large R̄, the 346

distortion stops decreasing and saturates; this occurs when the tuning curves are as 347

narrow as possible while still tiling the stimulus space (Fig. 3B, bottom). (The 348

distortion can be further decreased by increasing the number of available activity 349

patterns, which depends on the population size (Fig. 5A)). 350

The quality of the generative model is quantified by the DKL divergence between the 351

generative distribution, qψ(x), and the stimulus distribution, p(x); it is negligible for all 352

values of R̄ in the region of interest (Fig. 4B) (We recall that the ELBO, up to a 353

constant, is a lower bound to this quantity, and the gap is the DKL divergence between 354

the true and the approximate posterior distribution over neural activity, Eq. (8)). The 355

U-shape is due to the jaggedness of the generative model at high values of R̄, which is 356

attenuated as the population sizes increases (Fig. 5B)). 357

Different values of R̄ also result in different encoders, corresponding to different 358

arrangements of the tuning curves (Fig. 4C). For small values of R̄, tuning curves are 359

broad and the spacing between preferred positions is small, causing large overlaps: 360

different stimuli are mapped to similar distributions over neural activity patterns. 361

Moreover, they are characterized by low amplitudes and, thus, higher stochasticity; 362

indeed, stochastic neurons yield compressed representations [34]. Increasing R̄ causes 363

noise to be suppressed through an increase in the amplitude, and narrower and more 364

distributed tuning curves. 365

The solutions also differ in the structure of the prior over neural activity, qψ(r) (Fig. 366

4D, insets). In the regime in which the decoder ignores the latent variables, i.e., 367

qψ(x|r) ≈ qψ(x), the prior, qψ(r), is unstructured, and the couplings, J , are weak. By 368

contrast, when R̄ is large, the structure of the stimulus distribution affects the coupling 369

matrix in the prior, inducing coupling strengths that depend on the distances between 370
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Fig 4. Characterization of the optimal solutions as functions of the target rate. In all simulations, N = 12,
p(x) = Lognormal(1, 1), and results are averaged over 16 initializations of the parameters. (A) Solutions of the ELBO
optimization problem as a function of target rate, D(R̄) (blue curve), and theoretical optimum, D = H(p)− R̄ (black
curve), in the rate-distortion plane. Values of R̄ where the solutions coincide with the theoretical optimum (grey
region). Solutions depart from the optimal line when the rate is very low (poor generative model) or very high
(saturated distortion). Inset: mutual information between stimuli and neural responses as a function of R̄. (B)
Kullback-Leibler divergence between the stimulus and the generative distributions, as a function of R̄. (C) Optimal
tuning curves for different values of R̄. Each dot represents a neuron: the position on the y-axis corresponds to its
preferred stimulus, the size of the dot is proportional to the tuning width, and the color refers to the amplitude (see
legend). The curve on the right illustrates the data distribution, p(x). (D) Entropy of the prior distribution over
neural activity, qψ(r), as a function of R̄. Insets show two configurations of the coupling matrices, with rows ordered
according to the neurons’ preferred stimuli, and coupling strengths colored according to the legend. (E) MSE in the
stimulus estimate, obtained as the mean of the posterior (blue curve, scale on the left y-axis), or from samples (orange
curve, scale on the right y-axis), as a function of R̄. Inset: MSE (sampling) as a function of the average tuning width.

the neurons’ preferred positions. As the coupling strengths increase, the entropy of the 371

prior distribution decreases (Fig. 4D). We note, however, that in more complex 372

distributions for which, even when the rate is low, a structure is imposed to the prior 373

through the biases, h, the entropy can exhibit a non-monotonic behavior (Fig. S2E). 374

Finally, we characterize the decoding properties, in terms of a quantity commonly 375

used in perceptual experiments and theoretical analyses: the mean squared error (MSE) 376
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Fig 5. Dependence of the results on the population size. Same simulations as in Fig. 4, with different values
of the population size. (A) Optimal solutions (blue curves), D(R̄), for different population sizes, N , and theoretical
bound (black curve), D = H(p)− R̄, in the rate-distortion plane. (B) Kullback-Leibler divergence between the
stimulus and the generative distributions, as a function of R̄. (C) MSE in the stimulus estimate, obtained as the mean
of the posterior, as a function of R̄.

in the stimulus estimate. The estimate which minimizes the MSE is the mean of the 377

decoding distribution, q(x|r), x̂ = µϕ(r). We also consider the MSE when the stimulus 378

estimate is sampled from the posterior distribution, x̂ ∼ q(x|r). In Methods we compute 379

the two corresponding functional forms, (see Eqs. (14)-(15)), which differ by a term 380

equal to the posterior variance. 381

As expected from the higher mutual information between stimuli and neural 382

responses, the decoding performance of the system increases as a function of R̄, with a 383

similar qualitative behavior of the error in the two cases (Fig. 4E). But it is worth 384

examining the behavior quantitatively. In both cases, the MSE does not decrease 385

linearly with R̄, but rather it exhibits a rapid decrease followed by a slower one; the 386

quantitative value at hgih rates depends on the population size (Fig. 5C). In particular, 387

the system achieve comparable decoding performances for a broad range of values of the 388

tuning width (Fig. 4E, inset). Jointly, the results of Figs. 4B and E suggest that 389

intermediate representations, yielding a smooth approximation of the stimulus 390

distribution, yet achieving a low coding error, are preferred to representations with 391

extremely narrow tuning curves. 392

Optimal allocation of neural resources and coding performance 393

The classical efficient coding hypothesis prescribes an allocation of neural resources as a 394

function of the stimulus distribution: more frequently stimuli are represented with 395

higher precision. This has been proposed as an explanation of a number of 396

measurements of perceptual accuracy and behavioral bias [6, 35,36]. We investigate, in 397

our model, the relations between stimulus distribution, the use of neural resources 398

(tuning curves), and coding performance, and how each these with R̄. We emphasize 399

that the functional form of the stimulus distribution affects these relations, through its 400

interplay with the functional form not only of the encoder (as in the classical efficient 401

coding framework), but also of the generative distribution. In order to make statements 402
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about the typical behavior of the system, we average our results over different random 403

initializations of the parameters; single solutions might deviate from the average 404

behavior due to the small number of neurons and the high dimensionality of the 405

parameters space. We illustrate results for the non-trivial log-normal distributions over 406

stimuli; in Fig. S3 we report results obtained in the Gaussian case. Our conclusions can 407

be compared with results from previous studies. In particular, we invoke the analytical 408

results derived in Ref. [6] for a similar population coding model; in Sec. S2 Appendix. 409

Optimally heterogeneous allocation of neural resources, we provide an alternative 410

derivation of these results and we comment on the main differences with our model. 411

Here, we note that our results are obtained by considering a regime of strong 412

compression of the information (small population sizes), while previous studies focused 413

on the asymptotic regime with N →∞. 414

As illustrated in Fig. 4B, the target rate affects the neural density, i.e., the number 415

of neurons with preferred stimuli within a given stimulus window. In previous work, 416

maximizing the mutual information required that the neural density be proportional to 417

the stimulus density, d(x) ∝ p(x) [6, 20, 37]. In our case, the range of possible behaviors 418

is richer, especially when the stimulus distribution is non-trivial (i.e., it does not have 419

the same functional form as that of the generative distribution). At low rates, the 420

location of maximum density might be different from the mode of the stimulus 421

distribution, depending on the interplay between the generative and the stimulus 422

distributions (Figs. 6A, S3A). The neural density becomes more similar to the stimulus 423

distribution for large values of R̄: a power law functional form, d(x) = Adp(x)
γd , yields 424

a good agreement with our numerical results, with an exponent, γd, close to 1/2 (Fig. 425

6A). 426

In Ref. [6, 38], analytical results were obtained by constraining the neural density 427

and the tuning width relative to each other. This is equivalent to fixing the overlap 428

between tuning curves, by imposing w(x) ∝ d−1(x) ∝ p(x)−1 (see Sec. S2 Appendix. 429

Optimally heterogeneous allocation of neural resources). In our case, the tuning width 430

and neural density vary independently of each other, and the distribution of widths 431

exhibits an intricate behavior at small values of R̄ (Figs. 4B,S3B). However, at large 432

values of R̄, the tuning width decreases for large values of the stimulus distribution, and 433

its behavior is well described by a power law, wi = Aw/p(ci)
γw . As a result, as R̄ 434

increases, the inverse correlation between the neural density and the tuning width 435

becomes sharper (Figs. 4C,S3C). 436

A consequence of the heterogeneous allocation of neural resources is a non-uniform 437

coding performance across stimuli. Figure 7A shows that the MSE exhibits an inverse 438

relation as a function of the stimulus distribution, with more frequent stimuli encoded 439

more precisely. This is broadly consistent with previous studies [6,39], which maximized 440

the mutual information to obtain the expression 441

ε2(x) ∝ 1

p2(x)
. (29)

More precisely, this expression was derived using the Fisher information, whose inverse 442

is a lower bound to the variance of any unbiased estimator and which can be related to 443

the mutual information in some limits. Here, for all values of R̄, the error is well 444

described by a power law, ε2(x) = Ae/p(x)
γe , although the exponent changes as a 445

function of R̄ (Figs. 7 A,S3D). Finally, we illustrate how the configuration of the tuning 446

curves affects the coding performance, by plotting the MSE as a function of the neural 447

density and tuning width. We observe a correlation between high coding performance 448

and regions of high neural density as well as with narrow tuning widths (Figs. 7B,C, 449

S3E,F). 450

To summarize, given our choice of the loss function, which constrains the encoding 451

stage as a function of the decoding stage, we obtain a range of possible optimal neural 452
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Fig 6. Optimal allocation of neural resources. In all simulations, N = 12 and results are averaged over 16
initializations of the parameters, p(x) = Lognormal(1, 1). Results are illustrated for regions of the stimulus space
where the coding performance is sufficiently high, defined as the region where the MSE is lower than the variance of
the stimulus distribution. Below, we mention exponents of the power law fit when the variance explained is larger
then a threshold, R2 ≥ 0.7. (A) Neural density as a function x (dashed curves) and power-law fits (solid curves,
R2 = (0.21, 0.83, 0.95), γd = (−, 0.43, 0.62)), for three values of R̄ (low, intermediate, and high); the grey curve
illustrates the stimulus distribution. The density is computed by applying kernel density estimation to the set of the
preferred positions of the neurons. (B) Tuning width, wi, as a function of preferred stimuli, ci (dots), and power-law
fits (solid curves, R2 = (0.41, 0.18, 0.92), γw = (−,−, 0.71)) for three values of R̄; the grey curve illustrates the
stimulus distribution. (C) Tuning width, wi, as a function of the neural density, d(ci), for three values of R̄; Pearson
correlation coefficient ρ = (−0.78,−0.78,−0.90).

representations. In weakly constrained systems (large values of R̄), we qualitatively 453

recover previously derived relationships between tuning curves, stimulus distribution, 454

and coding performance. (The difference in the numerical values of the exponents in the 455

power laws can be explained by the differences between the two models; see Sec. S2 456

Appendix. Optimally heterogeneous allocation of neural resources. We note that, in 457

Ref. [6] the numerical value of the exponents also change as a function of the form of 458

the loss function.) In systems with severe information compression (small values of R̄), 459

the optimal resource allocation exhibits a more intricate behavior, that depends on the 460

interaction between the stimulus distribution and the properties of the generative model. 461

Case study: neural encoding of acoustic frequencies 462

Finally, we validate our theory on existing data by considering the empirical 463

distribution of acoustic frequencies in the environment. This distribution was obtained 464

in Ref. [38] by fitting the power spectrum of recordings data, S(f), with a power-law, 465

S(f) =
A

fp0 + fp
, (30)

with A = 2.4× 106, f0 = 1.52× 103, p = 2.61 (Fig. 8A, inset). 466

Despite the heavy tail in the stimulus distribution, we observe a broad range of 467

values of R̄ characterized by comparable values of the ELBO (Fig. 8A), and, thus, 468

characterized by comparable generative model performances (DKL(p||q) ≃ 0.6). Also in 469

this case the solutions are characterized by an encoder with increasingly narrow tuning 470

curves, and preferred stimuli more distributed according to the stimulus probability, for 471

increasing R̄ (Fig. 8B). 472
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Fig 7. Optimal allocation of coding performance. Same numerical simulations as in Fig. 6. (A) MSE (estimate
obtained through sampling) as a function of x (dashed curves), and power-law fits (solid curves, R2 = (0.92, 0.94, 0.81),
γe = (0.85, 0.70, 0.55)), for three values of R̄. (B),(C) MSE as a function of the neural density (B) and tuning width
(C), for three values of R̄; Pearson correlation coefficient ρdensity = (0.05,−0.91,−0.87), ρwidth = (0.61, 0.53, 0.72)

Finally, we test the prediction of our model regarding the dependence of the error on 473

the stimulus value by comparing it to experimental data. We borrow experimental 474

measurements of the so-called frequency-difference limens, the minimum detectable 475

changes in the frequency of a sinusoidal sound wave, from Ref. [40]. Instead of invoking 476

a decision rule, we employ the MSE of the stimulus estimate as a proxy for perceptual 477

resolution (ideally, the two quantities are related through the Fisher information [41]). 478

Since the small number of neurons imposes a fundamental bound to the coding 479

performance, we scale the MSE by a constant factor, a, which can be thought of as a 480

population size gain, to allow for a comparison. The functional form of the MSE 481

captures well the behavior of the frequency-difference limens for a broad range of values 482

of R̄ (Fig. 8C). These results show that, despite a large variability in the parameters of 483

the encoder, as is commonly observed in biological systems, robust predictions in the 484

perceptual domain can be derived and are consistent with experimental data. 485

Discussion 486

We studied neural representations that emerge in a framework in which populations of 487

neurons encode information about a continuous stimulus with simple tuning curves, but 488

with the additional assumption that the task of the decoder is to maintain a generative 489

model of the stimulus distribution. The consequence of this specific task imposed on the 490

decoder is that the encoder is set so as to maximize a bound to the mutual information 491

between stimulus and neural activity, as postulated by the efficient coding hypothesis, 492

subject to a constraint on the relative entropy between evoked and the prior 493

distributions over neural activity. Under this constraint, different optimal solutions are 494

obtained, corresponding to equally accurate generative models but (qualitatively) 495

different neural representations of the stimulus (Fig. 4). These representations differ in 496

the degree of compression of information in the neural responses, reflected in encoding 497

(neural) properties (Figs. 4 and 6), in the generative model prior over neural activity ( 498

Fig. 4D), and in the coding performance (Figs. 4 and 7). 499
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Fig 8. Generative model for distribution of acoustic frequencies. In all simulations, N = 12 and results are
averaged over 16 initializations of the parameters. (A) Solutions of the ELBO optimization problem as a function of
target rate, D(R̄) (blue curve), and theoretical optimum, D = H(p)−R (black curve), in the rate-distortion plane.
Inset: environmental distribution of acoustic frequencies, p(f). (B) Optimal tuning curves for different values of R̄.
Each dot represents a neuron: the position on the y-axis corresponds to its preferred stimulus, the size of the dot is
proportional to the tuning width, and the color refers to the amplitude (see legend in Fig. 4). The curve on the right
illustrates the data distribution, p(f). Insets show two examples. (C) Frequency discrimination as a function of
acoustic frequency. Red markers are data points from three different subjects, data from Ref. [40]. Solid curves are the
MSE (stimulus estimate obtained through sampling) for three values of R̄, scaled by a factor of a = (227, 121, 111).

What causes the degeneracy of the optimal solutions? 500

Degeneracy in the space of solutions results from the flexibility of the generative model. 501

Indeed, the marginal distribution, qψ(x) =
∑

r qψ(x|r)qψ(r), is a Gaussian mixture, 502

which is a universal approximator of densities (i.e., a well-chosen Gaussian mixture can 503

be used to approximate any smooth density function [42,43]). With a population of N 504

neurons we have, in principle, a mixture of 2N different Gaussians. The prior 505

distribution, defined by ∼ N2 parameters, as well as the functional form of the tuning 506

curves, constrain the configurations of latent variables which are exploited. However, 507

despite the undersampling in the space of neural activity patterns, the decoder still 508

retains sufficient flexibility to minimize the ELBO in multiple ways, and the more so 509

the simpler the stimulus distribution (e.g., compare a unimodal distirbution, Fig. 4, to 510

a multimodal one Fig. S1). Here, we focused on relatively simple, one-dimensional 511

stimulus distributions. As the statistics of many natural features are dominated by 512

low-frequency components (e.g., spatial frequencies in natural images), and if powerful 513

decoders are to represent deep brain areas [12, 44], we expect degeneracy in the space of 514

solutions even in the case of multi-dimensional stimuli. The corresponding encoding 515

schemes are interesting objects of future studies. 516

Internal models and perception as inference 517

Our choice on the form of the decoder stems from the broad assumption that organisms 518

interact with their environment with the use of internal models. These allow them to 519

perform inference and make predictions. But what form do internal models take and 520

what is their neural substrate? In previous studies [15,16,18,45], internal models were 521

defined by conditioning the probability of a stimulus, x, on the realization of a latent 522
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variable, z, through their joint distribution, q(z, x) = q(x|z)q(z). How the latent 523

variable was related to a specific neural representation was not prescribed. Sensory 524

areas were then assumed to compute a posterior distribution over the latent variable, 525

q(z|x). Only after this step is the neural activity invoked as a way to represent this 526

posterior distribution, either approximately from samples [16, 45], or through the use of 527

a specified parametric form and with the assumption that the values of the parameters 528

are encoded in neural activity [13,14]. 529

Instead, we define the generative model directly as a joint distribution of two 530

random variables, q(r, x); r is the neural activity, while x is defined on the space of 531

stimuli. The neural activity itself plays the role of a latent representation of the 532

stimulus, but it is not set, a priori, to some interpretable feature, such as the presence 533

or the intensity of a Gabor filter in models involving natural images (as in Refs. [16,45]). 534

In order to constrain sensory areas, we assume the generative model to be implemented 535

in downstream areas and we model its output with a flexible function, a neural network, 536

which outputs a point estimate and an uncertainty about the value of the 537

stimulus [24,25]. This output corresponds to a perceptual representation of the stimulus 538

in the brain, and can be related to behavioral measurements (as in Fig. 8C)). 539

Mathematically, the encoding distribution, pθ(r|x), is obtained as a variational 540

approximation of the posterior distribution of the generative model, qψ(r|x), as in 541

previous work. This distribution, however, is defined on the space of neural activity 542

patterns, and not on a set of abstract features. This choice has the drawback of the 543

absence of a simple semantic interpretation of the latent features, but presents the 544

advantage of a natural connection with an encoder based on properties of a neural 545

system, e.g., a set of tuning curves and a model of neural noise. In the case of flexible 546

generative models, different statistics of the latent variables turn out to be optimal. In 547

this sense, the choice of the encoder, as well as the prior of the generative model, is 548

useful to impose a structure on the characteristics of the neural representations. 549

Optimal tuning width 550

Our choice of encoding model allows us to compare our results with those of earlier 551

studies that considered the optimal arrangement of neurons with bell-shaped tuning 552

curves in the presence of non-uniform stimulus distributions [6, 20]. While for higher 553

values of the target rate we recover the previously derived allocation of neural resources 554

as a function of the stimulus distribution, the behavior for lower values of the target 555

rate is more intricate, and depends on the specifics of the stimulus distribution. Thus, 556

in our case, the constraint on neural resources has a stronger impact on their optimal 557

allocation than, for example, in Ref. [6], where the bound on the mean activity in the 558

population acts merely as a scaling factor, and the behavior of the tuning curves is more 559

constrained. In particular, in Ref. [6] the tuning width was fixed a priori to be inversely 560

proportional to the neural density, to enforce a fixed amount of overlap between tuning 561

curves: it was not optimized. This choice was made to avoid a common issue in this 562

type of calculations: in the case of a one-dimensional stimulus and in the asymptotic 563

limit of infinitely many neurons, the maximization of the mutual information yields the 564

pathological solution of infinitely narrow tuning curves [46,47]. Metabolic constraints 565

on the neural activity do not solve the issue, as narrow tuning curves can exhibit a 566

moderate activity (as long as their amplitude is not too large). 567

In our framework, instead, the optimal tuning width and the amount of overlap 568

between tuning curves are both optimized and vary as a function of R̄. Moreover, a 569

regime with intermediate values of the constraint, in which tuning curves are broad, 570

exhibits both a smooth generative model (low DKL divergence) and a low MSE (Fig. 571

4B,E). Broad tuning curves are beneficial to obtain smooth generative models, while 572

still allowing high for coding performance. 573
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Interpretation of the resource constraint 574

The constraint in Eq. (16) consists in the divergence between the evoked neural activity 575

and its prior distribution according to the generative model. This formulation is 576

different from usual metabolic constraints which are designed to account for the 577

energetic cost of neural activity [5], and one may ask whether such a constraint, 578

statistical in nature, also comes with a biological interpretation. 579

To answer this question, we invoke the results of Ref. [18], in which the prior 580

distribution over latent variables of the internal model is related to the spontaneous 581

neural activity. The authors start from the observation that in a well-calibrated internal 582

model the prior equals the mean posterior (Eq. (28)) [10]. By comparing the average 583

evoked activity to the spontaneous activity according to the DKL divergence, the 584

authors show that the two quantities become closer during development, and that this 585

phenomenology is specific to naturalistic stimuli. This finding is then proposed as 586

evidence of an internal model in primary visual cortex optimized for natural images, 587

acquired gradually during development. In this picture, the prior distribution of the 588

generative model is identified with the spontaneous neural activity; we note, however, 589

that there is no a priori reason to expect this relationship. 590

In our case, the prior distribution is parametrized by the biases and couplings of an 591

Ising model. As we have shown, there are multiple ways to achieve a statistically 592

optimal internal model and to minimize the DKL divergence between the two sides of 593

Eq. (28), which differ in the value of the rate. At low rates, Eq. (28) is approximated 594

by relying on the optimization of the encoder parameters which are set so as to make 595

pθ(r|x) similar to the prior for all stimuli; this then results in an unstructured coupling 596

matrix in the prior distribution (Fig. 4E, top). Conversely, at high rates, the encoder 597

has a well defined structure which achieves a low distortion, and Eq. (28) is 598

approximated by optimizing the parameters of the prior and embedding the structure of 599

the average posterior distribution in the connectivity matrix (Fig. 4E, bottom). The 600

value of the target rate can therefore be thought of as a cost of imposing structure in 601

prior (spontaneous activity), through circuit properties. Thus, our model suggest an 602

alternative normative principle to govern neural couplings as compared to information 603

maximization, as proposed in Ref. [48]. 604

VAEs in neuroscience: related studies 605

VAEs are among the state of the art approaches to unsupervised learning, and in recent 606

years they have been applied in different contexts in neuroscience to model neural 607

responses. Several studies have considered neuroscience-inspired VAEs, in which the 608

generative model was based on a decomposition of natural images into sparse 609

combinations of linear features [49]. It was then paired with a powerful encoder, which 610

models the sensory encoding process, and specific assumptions on the prior distribution 611

of the latent variables, to obtain representations similar to the ones observed in the 612

early visual pathway (in V1 and V2) [12,50,51]. In these models, the simplicity of the 613

generative distribution prevented posterior collapse. We note that, in our case, we 614

reverse this approach, by assuming a specific a simple and biologically motivated form 615

of the encoder (a set of tuning curves), while we allow for a flexible decoder. 616

In the context of higher visual areas instead, more complex generative models were 617

needed to capture neural representations [44]; to overcome the issue of posterior 618

collapse, the authors used a loss function akin to the one in Eq. (18), but the value of β 619

was chosen by hand. In doing so, they obtained an empirical advantage in the semantic 620

interpretability of the latent variables, at the cost of abandoning the requirement that 621

the loss function be a bound to the log-likelihood. This, so-called, β-VAE approach was 622

also employed in Ref. [52] to study optimal tuning curves in a population coding model 623
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of spiking neurons similar to ours. In this study, however, the population as a whole was 624

constrained to emit one spike only, limiting the number of available activity patterns to 625

N (the number of neurons). Moreover, the encoder and the decoder are not optimized 626

independently; this choice prevented the emergence of multiple alternative neural 627

representations in the β = 1 case. By varying β, the authors obtained neural 628

representations which differed in the shape of the optimal tuning curves, but, since for 629

β ̸= 1 the ELBO was not optimized, the resulting generative model was not accurate. 630
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Supporting information 634

S1 Appendix. Numerical approaches in the case of large neural 635

populations 636

To extend our model to larger populations, there are two numerical issues to consider. 637

The first one concerns the distortion term and the gradient with respect to the 638

parameters of the encoder. In order to obtain a low-variance estimate of the gradient, 639

an approach is to use the so-called reparametrization trick together with a continuous 640

relaxation of the discrete random variable, r , (or Gumbel-softmax trick [53,54]), and 641

calculate the gradient as 642

∇θD(x) = ∇θ ⟨log qψ(x|r)⟩pθ(r|x)
≈ ⟨∇θ log qψ(x|fθ(ξ, x))⟩p(ξ) ,

(31)

with p(ξ) = U(0, 1). Here, 643

fθ(ξ, x)) = S
(
ηθ(x) + S−1(ξ)

τ

)
(32)

depends deterministically on the parameters θ through the natural parameters of the 644

encoder; the hyperparameter τ controls the steepness of the logistic function, and 645

consequently the bias-variance trade-off for the gradient; simulations with values of 646

τ = 10−2 yield results comparable to the ones presented here. 647

The second issue pertains to the form of the rate. Its expression can be simplified as 648

DKL (pθ(r|x)||qψ(r)) =
〈
(η(x)− h) r− rTJr

〉
pθ(r|x)

−
N∑
i=1

log
(
1 + eηi(x)

)
+ logZ

= (η(x)− h)p(x)− pT (x)Jp(x)−
N∑
i=1

log
(
1 + eηi(x)

)
+ logZ,

(33)

where p(x) = S (η(x)) is the vector of mean parameters of the encoding distribution 649

(i.e., the spiking probability of neurons). In the expectation of the quadratic form, 650

⟨rTJr⟩pθ(r|x) = tr(KrrJ) + pT (x)Jp(x), we have that tr(KrrJ) = 0, as the covariance 651

matrix of the activity patterns, Krr, is proportional to the identity, and the diagonal 652

elements of J vanish. Here, the numerical load is in computing the gradient of the 653

log-partition function, logZ; this can be done by Monte Carlo methods [55]. 654

S2 Appendix. Optimally heterogeneous allocation of neural 655

resources 656

We provide an alternative derivation, based on scaling arguments, of the results in 657

Ref. [6]. We consider a population of N neurons, in which neuron i responds to a 658

continuous scalar stimulus, x, according to a bell-shaped tuning curve, fi(x). We 659

consider a discretization of the stimulus space, x = {xi}Li=1, and we denote by di the 660

number of neurons whose preferred stimulus is xi and by wi their tuning width (Fig. 661

S4A). The number of neurons encoding information about stimulus xi scales as 662

#neurons =Mi ∼ diwi, (34)

as increasing the number of neurons and the tuning width (both of which, we assume, 663

vary sufficiently smoothly with position) each increases the number of neurons that 664
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’monitor’ a given of the stimulus. We assume that neural responses, r, are corrupted by 665

noise with standard deviation η. Through a simple geometric argument (Fig. S4B), we 666

estimate the square of the difference between the stimulus estimate based on the 667

activity of neuron j and the true stimulus, i.e., the squared error, as 668

(x̂i − xi)2 ≡ ∆x2i ≈

(
η

f ′j(xi)

)2

, (35)

where f ′j(x) denotes the slope of the tuning curve j at xi. The derivative of a 669

bell-shaped tuning curve scales as f ′i(x) ∼ fi(x)/wi; if noise has a Poisson distribution, 670

the variance of the response is equal to the mean, so that Eq. (35) can be written as 671

∆x2i ∼
(
const

wi

)−2

∼ w2
i . (36)

As M independent neurons encode stimulus xi, we can average the single estimates 672

from each of the neuron to obtain a more faithful estimate. The variance of this 673

population estimate, i.e., the MSE, for stimulus i, scales as 674

ε2i = Var

 1

Mi

M∑
j=1

(∆xi)j

 =
1

M2

Mi∑
j=1

(∆x2i )j

≈ w2
i

Mi

≈ wi
di
,

(37)

where the last equality follows from Eq. (34). By taking the limit of an infinitely fine 675

discretization, L→∞, and assuming that the population size is large enough so that 676

the quantities di and wi vary smoothly, we can consider a continuum limit with 677

di → d(x), (38)

the neural density, 678

wi → w(x), (39)

the tuning width, and 679

Mi →M(x) = d(x)w(x) (40)

We will require an additional constraint to find optimal solutions. Different forms of 680

constraint can be imposed. The constraint that reproduces the results of [6] ensures a 681

’uniform coverage’ across stimuli, i.e., M(x) = constant, or 682

w(x) ∼ 1

d(x)
. (41)

The efficient coding hypothesis posits that neurons are arranged so as to maximize 683

the mutual information between stimuli and neural responses. An approximation of the 684

mutual information in terms of the Fisher information, J(x), in the asymptotic limit, 685

can be obtained as 686

I(r, x) =

∫
dxp(x) log (J(x)) + const, (42)

where p(x) is the distribution of stimuli and const denotes terms that don’t depend on 687

the neural responses [20]. The Fisher information is a lower bound to the variance of 688

any unbiased estimator; if we assume that the bound is tight, we have that 689

J(x) ≈ 1

ε2(x)
∼ d(x)2, (43)
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where ε2(x) corresponds to the continuum limit of Eq. (37) and we used the scaling 690

relation of Eq. (41). 691

We now maximize the mutual information subject to a constraint on the neural 692

resources–here, merely, the number of neurons–by optimizing the sum of the two terms 693

max
d(x)

{∫
dxp(x) log

(
d(x)2

)
+ β

∫
dxd(x)

}
. (44)

By taking a functional derivative with respect to d(x) and setting it to zero, we obtain 694

d(x) ∼ p(x), (45)

and, consequently, the scaling of the MSE as 695

ε2(x) ∼ 1

p2(x)
. (46)

Main differences with our model. Our model is similar to the one presented above, 696

but it differs from it in ways which complicate analytical calculations and give rise to 697

more complex behaviors. 698

• The first difference is in the noise model: we assume binary neurons, while the 699

above calculations are carried out with Poisson neurons, an assumption which 700

allows the simplification in Eq. (36). 701

• The second difference is that, in our formulation, the tuning width and neural 702

density are free to vary independently. As a result, we can achieve a non-uniform 703

coverage across stimuli. 704

• The third difference is that we assume a finite population size, rather than he 705

asymptotic N →∞ limit. 706

• Finally, our loss function is similar to that in Eq. (44) for what concerns the first 707

term, which represents the mutual information between stimuli and neural 708

responses (although in our case we have a lower bound, which depends also on the 709

decoder), but the constraint is more intricate due to its dependence on the 710

generative model. 711
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A B
Tuning curves Generative distribution

C
Loss functions

Fig S1. Qualitatively different optimal configurations. Same as Fig. 3, in the case of lognormal distribution
over stimuli, p(x) = Lognormal(1, 1). Top row: high-distortion, low-rate solution. Bottom row: low-distortion,
high-rate solution. (A) Bell-shaped tuning curves of the encoder (probability of neuron i to emit a spike, as a function
of x). (B) Comparison between the stimulus distribution, p(x) (green curve), and the generative distribution,
q(x) =

∑
r q(x|r)q(r) (purple curve). (C) Numerical values of the ELBO, and the distortion and rate terms.

June 1, 2023 25/32



A

B

Encoder (tuning curves)Rate-distortion plane

Stimulus vs generative dist. DecoderPrior

W
id
th
:

A
m
p
lit
u
d
e
:

C

D E

Fig S2. Characterization of the optimal solutions as functions of the target rate. Same as Fig. 4, but with
p(x) a multimodal distribution: a mixture of three Gaussians with means {−4, 0, 2}; variances {1, 0.5, 1}; and mixture
coefficients {0.3, 0.2, 0.5}. (A) Solutions of the ELBO optimization problem as a function of target rate, D(R̄) (blue
curve), and theoretical optimum, D = H(p)−R (black curve), in the rate-distortion plane. Values of R̄ where the
solutions coincide with the theoretical optimum (grey region). Solutions depart from the optimal line when the rate is
very low (poor generative model) or very high (saturated distortion). Inset: mutual information between stimuli and
neural responses as a function of R̄. (B) DKL divergence between the stimulus and the generative distributions, as a
function of R̄. Insets: two examples of comparison between stimulus (green curve) and generative distribution (purple
curve). (C) Optimal tuning curves for different values of R̄. Each dot represents a neuron: the position on the y-axis
corresponds to its preferred stimulus, the size of the dot is proportional to the tuning width, and the color refers to
the amplitude (see legend). The curve on the right illustrates the data distribution, p(x). (D) Entropy of the prior
distribution over neural activity, qψ(r), as a function of R̄. Insets show two configurations of the coupling matrices,
with rows ordered according to the neurons’ preferred stimuli, and coupling strengths colored according to the legend.
(E) MSE of the stimulus estimate, obtained as the mean of the posterior (blue curve, scale on the left y-axis), or from
samples (orange curve, scale on the right y-axis), as a function of R̄. Inset: MSE (sampling) as a function of the
average tuning width.
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Error Error vs density Error vs width
D E F

Neural density Tuning width Density vs widthA B C

Fig S3. Optimal allocation of neural resources and coding performance. Same as Fig. 6,7, in the case of a
Gaussian distribution p(x) = N (0, 5) (same of Fig. 3). (A) Neural density as a function x (dashed curves) and
power-law fits (solid curves, R2 = (0.96, 0.99, 0.99), γd = (0.99, 0.71, 0.64)), for three values of R̄ (low, intermediate,
and high); the grey curve illustrates the stimulus distribution. The density is computed by applying kernel density
estimation to the set of the preferred positions of the neurons. (B) Tuning width, wi, as a function of preferred
stimuli, ci (dots), and power-law fits (solid curves, R2 = (0.10, 0.74, 0.92), γw = (−, 0.87, 0.65)) for three values of R̄;
the grey curve illustrates the stimulus distribution. (C) Tuning width, wi, as a function of the neural density, d(ci),
for three values of R̄; Pearson correlation coefficient ρ = (0.30,−0.91,−0.97). (D) MSE (estimate obtained through
sampling) as a function of x (dashed curves), and power-law fits (solid curves, R2 = (0.96, 0.99, 0.90),
γe = (1.47, 1.32, 0.83)), for three values of R̄. (E),(F) MSE as a function of the neural density (E) and tuning width
(F), for three values of R̄; Pearson correlation coefficient ρdensity = (−0.91,−0.97,−0.8), ρwidth = (0.31, 0.93, 0.88)
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A B

Fig S4. Population coding model with bell-shaped tuning curves. (A) A one-dimensional stimulus is
encoded through bell-shaped tuning curves. The number of neurons whose preferred positions are a given stimulus, xi,
is denoted by ni, while wi denotes the tuning width. (B) Approximate scaling of the error in stimulus estimate, ∆xi,
when the response of a neuron, with mean fj , is affected by a noise of standard deviation η.
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