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Abstract An abundant literature reports on ‘sequential effects’ observed when humans make 
predictions on the basis of stochastic sequences of stimuli. Such sequential effects represent 
departures from an optimal, Bayesian process. A prominent explanation posits that humans are 
adapted to changing environments, and erroneously assume non-stationarity of the environ-
ment, even if the latter is static. As a result, their predictions fluctuate over time. We propose 
a different explanation in which sub-optimal and fluctuating predictions result from cognitive 
constraints (or costs), under which humans however behave rationally. We devise a framework 
of costly inference, in which we develop two classes of models that differ by the nature of the 
constraints at play: in one case the precision of beliefs comes at a cost, resulting in an expo-
nential forgetting of past observations, while in the other beliefs with high predictive power are 
favored. To compare model predictions to human behavior, we carry out a prediction task that 
uses binary random stimuli, with probabilities ranging from 0.05 to 0.95. Although in this task the 
environment is static and the Bayesian belief converges, subjects’ predictions fluctuate and are 
biased toward the recent stimulus history. Both classes of models capture this ‘attractive effect’, 
but they depart in their characterization of higher-order effects. Only the precision-cost model 
reproduces a ‘repulsive effect’, observed in the data, in which predictions are biased away from 
stimuli presented in more distant trials. Our experimental results reveal systematic modulations 
in sequential effects, which our theoretical approach accounts for in terms of rationality under 
cognitive constraints.

Editor's evaluation
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tive. The authors provide convincing evidence that attractive and repulsive sequential effects in 
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Introduction 

In many situations of uncertainty, some outcomes are more probable than others. Knowing the prob-
ability distributions of the possible outcomes provides an edge that can be leveraged to improve and 
speed up decision making and perception (Summerfield and de Lange, 2014). In the case of choice 
reaction-time tasks, it was noted in the early 1950s that human reactions were faster when responding 
to a stimulus whose probability was higher (Hick, 1952; Hyman, 1953). In addition, faster responses 
were obtained after a repetition of a stimulus (i.e., when the same stimulus was presented twice in 
a row), even in the case of serially-independent stimuli (i.e., when the preceding stimulus carried no 
information on subsequent ones; Hyman, 1953; Bertelson, 1965). The observation of this seem-
ingly suboptimal behavior has motivated in the following decades a profuse literature on ‘sequential 
effects’, i.e., on the dependence of reaction times on the recent history of presented stimuli (Korn-
blum, 1967; Soetens et al., 1985; Cho et al., 2002; Yu and Cohen, 2008; Wilder et al., 2009; Jones 
et al., 2013; Zhang et al., 2014; Meyniel et al., 2016). These studies consistently report a recency 
effect whereby the more often a simple pattern of stimuli (e.g. a repetition) is observed in recent stim-
ulus history, the faster subjects respond to it. In tasks in which subjects are asked to make predictions 
about sequences of random binary events, sequential effects are also observed and they have given 
rise since the 1950s to a rich literature (Jarvik, 1951; Edwards, 1961; McClelland and Hackenberg, 
1978; Matthews and Sanders, 1984; Gilovich et al., 1985; Ayton and Fischer, 2004; Burns and 
Corpus, 2004; Croson and Sundali, 2005; Bar-Eli et al., 2006; Oskarsson et al., 2009; Plonsky 
et al., 2015; Plonsky and Erev, 2017; Gökaydin and Ejova, 2017).

Sequential effects are intriguing: why do subjects change their behavior as a function of the recent 
past observations when those are in fact irrelevant to the current decision? A common theoretical 
account is that humans infer the statistics of the stimuli presented to them, but because they usually 
live in environments that change over time, they may believe that the process generating the stimuli is 
subject to random changes even when it is in fact constant (Yu and Cohen, 2008; Wilder et al., 2009; 
Zhang et al., 2014; Meyniel et al., 2016). Consequently, they may rely excessively on the most recent 
stimuli to predict the next ones. In several studies, this was heuristically modeled as a ‘leaky integra-
tion’ of the stimuli, that is, an exponential discounting of past observations (Cho et al., 2002; Yu and 
Cohen, 2008; Wilder et al., 2009; Jones et al., 2013; Meyniel et al., 2016). Here, instead of positing 
that subjects hold an incorrect belief on the dynamics of the environment and do not learn that it is 
stationary, we propose a different account, whereby a cognitive constraint is hindering the inference 
process and preventing it from converging to the correct, constant belief about the unchanging statis-
tics of the environment. This proposal calls for the investigation of the kinds of choice patterns and 
sequential effects that would result from different cognitive constraints at play during inference.

We derive a framework of constrained inference, in which a cost hinders the representation of 
belief distributions (posteriors). This approach is in line with a rich literature that views several percep-
tual and cognitive processes as resulting from a constrained optimization: the brain is assumed to 
operate optimally, but within some posited limits on its resources or abilities. The ‘efficient coding’ 
hypothesis in neuroscience (Ganguli and Simoncelli, 2016; Wei and Stocker, 2015; Wei and Stocker, 
2017; Prat-Carrabin and Woodford, 2021c) and the ‘rational inattention’ models in economics 
(Sims, 2003; Woodford, 2009; Caplin et al., 2019; Gabaix, 2017; Azeredo da Silveira and Wood-
ford, 2019; Azeredo da Silveira et al., 2020) are examples of this approach, which has been called 
‘resource-rational analysis’ (Griffiths et al., 2015; Lieder and Griffiths, 2019). Here, we investigate 
the proposal that human inference is resource-rational, i.e., optimal under a cost. As for the nature 
of this cost, we consider two natural hypotheses: first, that a higher precision in belief is harder for 
subjects to achieve, and thus that more precise posteriors come with higher costs; and second, that 
unpredictable environments are difficult for subjects to represent, and thus that they entail higher 
costs. Under the first hypothesis, the cost is a function of the belief held, while under the second 
hypothesis the cost is a function of the inferred environment. We show that the precision cost predicts 
‘leaky integration’: in the resulting inference process, remote observations are discarded. Crucially, 
beliefs do not converge but fluctuate instead with the recent stimulus history. By contrast, under the 
unpredictability cost, the inference process does converge, although not to the correct (Bayesian) 
posterior, but rather to a posterior that implies a biased belief on the temporal structure of the stimuli. 
In both cases, sequential effects emerge as the result of a constrained inference process.

https://doi.org/10.7554/eLife.81256
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We examine experimentally the degree to which the models derived from our framework account 
for human behavior, with a task in which we repeatedly ask subjects to predict the upcoming stim-
ulus in sequences of Bernoulli-distributed stimuli. Most studies on sequential effects only consider 
the equiprobable case, in which the two stimuli have the same probability. However, the models we 
consider here are more general than this singular case and they apply to the entire range of stimulus 
probability. We thus manipulate in separate blocks of trials the stimulus generative probability (i.e., 
the Bernoulli probability that parameterizes the stimulus) to span the range from 0.05 to 0.95 by 
increments of 0.05. This enables us to examine in detail the behavior of subjects in a large gamut of 
environments from the singular case of an equiprobable, maximally-uncertain environment (with a 
probability of 0.5 for both stimuli) to the strongly-biased, almost-certain environment in which one 
stimulus occurs with probability 0.95.

To anticipate on our results, the predictions of subjects depend on the stimulus generative prob-
ability, but also on the history of stimuli. We examine whether the occurrence of a stimulus, in past 
trials, increase the proportion of predictions identical to this stimulus (‘attractive effect’), or whether 
it decreases this proportion (‘repulsive effect’). The two costs presented above reproduce qualita-
tively the main patterns in subjects’ data, but they make distinct predictions as to the modulations 
of the recency effect as a function of the history of stimuli, beyond the last stimulus. We show that 
the responses of subjects exhibit an elaborate, and at times counter-intuitive, pattern of attractive 
and repulsive effects, and we compare these to the predictions of our models. Our results suggest 
that the brain infers a stimulus generative probability, but under a constraint on the precision of 
its internal representations; the inferred generative process may be more general than the actual 
one, and include higher-order statistics (e.g. transition probabilities), in contrast with the Bernoulli-
distributed stimulus used in the experiment.

We present the behavioral task and we examine the predictions of subjects — in particular, 
how they vary with the stimulus generative probability, and how they depend, at each trial, on the 
preceding stimulus. We then introduce our framework of inference under constraint, and the two 
costs we consider, from which we derive two families of models. We examine the behavior of these 
models and the extent to which they capture the behavioral patterns of subjects. The models make 
different qualitative predictions about the sequential effects of past observations, which we confront 
to subjects’ data. We find that the predictions of subjects are qualitatively consistent with a model of 
inference of conditional probabilities, in which precise posteriors are costly.

Results
Subjects’ predictions of a stimulus increase with the stimulus 
probability
In a computer-based task, subjects are asked to predict which of two rods the lightning will strike. 
On each trial, the subject first selects by a key press the left- or right-hand-side rod presented on 
screen. A lightning symbol (which is here the stimulus) then randomly strikes either of the two rods. 
The trial is a success if the lightning strikes the rod selected by the subject (Figure 1a). The location 
of the lightning strike (left or right) is a Bernoulli random variable whose parameter ‍p‍ (the stimulus 
generative probability) we manipulate across blocks of 200 trials: in each block, ‍p‍ is a multiple of 0.05 
chosen between 0.05 and 0.95. Changes of block are explicitly signaled to the subjects: each block 
is presented as a different town exposed to lightning strikes. The subjects are not told that the loca-
tions of the strikes are Bernoulli-distributed (in fact no information is given to them regarding how the 
locations are determined). Moreover, in order to capture the ‘stationary’ behavior of subjects, which 
presumably prevails after ample exposure to the stimulus, each block is preceded by 200 passive trials 
in which the stimuli (sampled with the probability chosen for the block) are successively shown with 
no action from the subject (Figure 1b); this is presented as a ‘useful track record’ of lightning strikes 
in the current town. (To verify the stationarity of subjects’ behavior, we compare their responses in the 
first and second halves of the 200 trials in which they are asked to make predictions. In most cases 
we find no significant differences. See Appendix.) We provide further details on the task in Methods.

The behavior of subjects varies with the stimulus generative probability, ‍p‍. In our analyses, we are 
interested in how the subjects’ predictions of an event (left or right strike) vary with the probability 
of this event, regardless of its nature (left or right). Thus, for instance, we would like to pool together 

https://doi.org/10.7554/eLife.81256
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the trials in which a subject makes a rightward prediction when the probability of a rightward strike 
is 0.7, and the trials in which a subject makes a leftward prediction when the probability of a leftward 
strike is also 0.7. Therefore, throughout the paper, we do not discuss whether subjects predict ‘right’ 
or ‘left’, and instead we discuss whether they predict the event ‘A’ or the complementary event ‘B’: in 
different blocks of trials, A (and similarly B) may refer to different locations; but importantly, B always 
corresponds to the location opposite to A, and ‍p‍ denotes the probability of A (thus B has probability 

‍1 − p‍). This allows us, given a probability ‍p‍, to pool together the responses obtained in blocks of trials 
in which one of the two locations has probability ‍p‍. One advantage of this pooling is that it reduces 
the noise in data. Looking at the unpooled data, however, does not change our conclusions; see 
Appendix.

Turning to the behavior of subjects, we denote by ‍̄p(A)‍ the proportion of trials in which a subject 
predicts the event A. In the equiprobable condition (‍p = 0.5‍), the subjects predict either side on about 
half the trials (‍̄p(A) = .496‍, subjects pooled; standard error of the mean (sem): 0.008; p-value of t-test 
of equality with 0.5: 0.59). In the non-equiprobable conditions, the optimal behavior is to predict A on 
none of the trials (‍̄p(A) = 0‍) if ‍p < 0.5‍, or on all trials (‍̄p(A) = 1‍) if ‍p > 0.5‍. The proportion of predictions 
A adopted by the subjects also increases as a function of the stimulus generative probability (Pearson 
correlation coefficient between ‍p‍ and ‍̄p(A)‍, subjects pooled: .97; p-value: 3.3e-6; correlation between 
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Figure 1. The Bernoulli sequential prediction task. (a) In each successive trial, the subject is asked to predict which of two rods the lightning will strike. 
(1) A trial begins. (1’) The subject chooses the right-hand-side rod (bold lines), but the lightning strikes the left one (this feedback is given immediately 
after the subject makes a choice). (2) 1.25 s after the beginning of the preceding trial, a new trial begins. (2’) The subject chooses the right-hand-side 
rod, and this time the lightning strikes the rod chosen by the subject (immediate feedback). The rod and the connected battery light up (yellow), 
indicating success. (3) A new trial begins. (3’) If after 1 s the subject has not made a prediction, a red cross bars the screen and the trial ends. (4) A new 
trial begins. (4’) The subject chooses the left-hand-side rod, and the lightning strikes the same rod. In all cases, the duration of a trial is 1.25 s. (b) In 
each block of trials, the location of the lightning strike is a Bernoulli random variable with parameter ‍p‍, the stimulus generative probability. Each subject 
experiences 10 blocks of trials. The stimulus generative probability for each block is chosen randomly among the 19 multiples of 0.05 ranging from 0.05 
to 0.95, with the constraint that if ‍p‍ is chosen for a given block, neither ‍p‍ nor ‍1 − p‍ can be chosen in the subsequent blocks; as a result for any value 
‍p‍ among these 19 probabilities spanning the range from 0.05 to 0.95, there is one block in which one of the two rods receives the lightning strike with 
probability ‍p‍. Within each block the first 200 trials consist in passive observation and the 200 following trials are active trials (depicted in panel a).

https://doi.org/10.7554/eLife.81256
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the ‘logits’, 
‍
ln p

1 − p‍
: 0.994, p-value: 5.7e-9.), but not as steeply: it lies between the stimulus generative 

probability ‍p‍, and the optimal response 0 (if ‍p < 0.5‍) or 1 (if ‍p > 0.5‍; Figure 2a).

First-order sequential effects: attractive influence of the most recent 
stimulus on subjects’ predictions
The sequences presented to subjects correspond to independent, Bernoulli-distributed random 
events. Having shown that the subjects’ predictions follow (in a non-optimal fashion) the stimulus 
generative probability, we now test whether they also exhibit the non-independence of consecu-
tive trials featured by the Bernoulli process. Under this hypothesis and in the stationary regime, the 
proportion of predictions A conditional on the preceding stimulus being A, ‍̄p(A|A)‍, should be no 
different than the proportion of predictions A conditional on the preceding stimulus being B, ‍̄p(A|B)‍. 
(Here and below, ‍̄p(X|Y)‍ denotes the proportion of predictions X conditional on the preceding obser-
vation being Y, and not on the preceding response being Y. For the possibility that subjects’ responses 
depend on the preceding response, see Methods.)

In other words, conditioning on the preceding stimulus should have no effect. In subjects’ 
responses, however, these two conditional proportions are markedly different for all stimulus genera-
tive probabilities (Fisher exact test, subjects pooled: all p-values < 1e-10; Figure 2a). Both quantities 
increase as a function of the stimulus generative probability, but the proportions of predictions A 
conditional on an A are consistently greater than the proportions of predictions A conditional on a 
B, i.e., ‍̄p(A|A) − p̄(A|B) > 0‍ (Figure 2b). (We note that because the stimulus is either A or B, it follows 
that, symmetrically, the proportions of predictions B conditional on a B are consistently greater than 
the proportions of predictions B conditional on an A.) In other words, the preceding stimulus has an 

a b

Figure 2. Across all stimulus generative probabilities, subjects are more likely than average to make a prediction equal to the preceding observation. 
(a) Proportion of predictions A in subjects’ pooled responses as a function of the stimulus generative probability, conditional on observing an A (blue 
line) or a B (orange line) on the preceding trial, and unconditional (grey line). The widths of the shaded areas indicate the standard error of the mean 
(n = 178 to 3603). (b) Difference between the proportion of predictions A conditional on the preceding observation being an A, and the proportion 
of predictions A conditional on the preceding observation being a B. This difference is positive across all stimulus generative probabilities, that is, 
observing an A at the preceding trial increases the probability of predicting an A (p-values of Fisher’s exact tests, with Bonferroni-Holm-Šidák correction, 
are all below 1e-13). Bars are twice the square root of the sum of the two squared standard errors of the means (for each point, total n: 3582 to 3781). 
The binary nature of the task results in symmetries in this representation of data: in panel (a) the grey line is symmetric about the middle point and the 
blue and orange lines are reflections of each other, and in panel (b) the data is symmetric about the middle probability, 0.5. For this reason, for values of 
the stimulus generative probability below 0.5 we show the curves in panel (a) as dotted lines, and the data points in panel (b) as white dots with dotted 
error bars.

https://doi.org/10.7554/eLife.81256
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‘attractive’ sequential effect. In addition, this attractive sequential effect seems stronger for values 
of the stimulus generative probability closer to the equiprobable case (p = 0.5), and to decrease 
for more extreme values (‍p‍ closer to 0 or to 1; Figure 2b). The results in Figure 2 are obtained by 
pooling together the responses of the subjects. Results derived from an across-subjects analysis are 
very similar; see Appendix.

A framework of costly inference
The attractive effect of the preceding stimulus on subjects’ responses suggests that the subjects 
have not correctly inferred the Bernoulli statistics of the process generating the stimuli. We investi-
gate the hypothesis that their ability to infer the underlying statistics of the stimuli is hampered by 
cognitive constraints. We assume that these constraints can be understood as a cost, bearing on the 
representation, by the brain, of the subject’s beliefs about the statistics. Specifically, we derive an 
array of models from a framework of inference under costly posteriors (Prat-Carrabin et al., 2021a), 
which we now present. We consider a model subject who is presented on each trial ‍t‍ with a stim-
ulus ‍xt ∈ {0, 1}‍ (where 0 and 1 encode for B and A, respectively) and who uses the sequence of 
stimuli ‍x1:t = (x1, . . . , xt)‍ to infer the stimulus statistics, over which she holds the belief distribution ‍̂Pt‍. 
A Bayesian observer equipped with this belief ‍̂Pt‍ and observing a new observation ‍xt+1‍ would obtain 
its updated belief ‍Pt+1‍ through Bayes’ rule. However, a cognitive cost ‍C(P)‍ hinders our model subject’s 
ability to represent probability distributions ‍P‍. Thus, she approximates the posterior ‍Pt+1‍ through 
another distribution ‍̂Pt+1‍ that minimizes a loss function ‍L‍ defined as

	﻿‍ L(P̂t+1) = D(P̂t+1; Pt+1) + λC(P̂t+1),‍� (1)

where ‍D‍ is a measure of distance between two probability distributions, and ‍λ ≥ 0‍ is a coefficient spec-
ifying the relative weight of the cost. (We are not proposing that subjects actively minimize this quan-
tity, but rather that the brain’s inference process is an effective solution to this optimization problem.) 
Below, we use the Kullback-Leibler divergence for the distance (i.e. ‍D(P̂t+1; Pt+1) = DKL(P̂t+1||Pt+1)‍). If 
‍λ = 0‍, the solution to this minimization problem is the Bayesian posterior; if ‍λ ̸= 0‍, the cost distorts the 
Bayesian solution in ways that depend on the form of the cost borne by the subject (we detail further 
below the two kinds of costs we investigate).

In our framework, the subject assumes that the ‍m‍ preceding stimuli (‍xt−m+1:t‍ with ‍m ≥ 0‍) and a 
vector of parameters ‍q‍ jointly determine the distribution of the stimulus at trial ‍t + 1‍, ‍p(xt+1|xt−m+1:t, q)‍. 
Although in our task the stimuli are Bernoulli-distributed (thus they do not depend on preceding stimuli) 
and a single parameter determines the probability of the outcomes (the stimulus generative proba-
bility), the subject may admit the possibility that more complex mechanisms govern the statistics of 
the stimuli, for example transition probabilities between consecutive stimuli. Therefore, the vector ‍q‍ 
may contain more than one parameter and the number ‍m‍ of preceding stimuli assumed to influence 
the probability of the following stimulus, which we call the ‘Markov order’, may be greater than 0.

Below, we call ‘Bernoulli observer’ any model subject who assumes that the stimuli are Bernoulli-
distributed (‍m = 0‍); in this case the vector ‍q‍ consists of a single parameter that determines the prob-
ability of observing A, which we also denote by ‍q‍ for the sake of concision. The bias and variability 
in the inference of the Bernoulli observer is studied in Prat-Carrabin et al., 2021a. We call ‘Markov 
observer’ any model subject who posits that the probability of the stimulus depends on the preceding 
stimuli (‍m > 0‍). In this case, the vector ‍q‍ contains the ‍2m‍ conditional probabilities of observing A after 
observing each possible sequence of ‍m‍ stimuli. For instance, with ‍m = 1‍ the vector ‍q‍ is the pair of 
parameters ‍(qA, qB)‍ denoting the probabilities of observing a stimulus A after observing, respectively, 
a stimulus A and a stimulus B. In the absence of a cost, the belief over the parameter(s) eventually 
converges towards the parameter vector that is consistent with the generative Bernoulli statistics 
governing the stimulus (except if the prior precludes this parameter vector). Below, we assume a 
uniform prior.

To understand how the costs contort the inference process, it is useful to have in mind the solution 
to the ‘unconstrained’ inference problem (with ‍λ = 0‍), i.e., the Bayesian posterior, which we denote 
by ‍P

∗
t (q)‍. In the case of a Bernoulli observer (‍m = 0‍), after ‍t‍ trials, the Bayesian posterior is a Beta 

distribution,

	﻿‍ P∗
t (q) ∝ qnA

t (1 − q)nB
t ,‍� (2)

https://doi.org/10.7554/eLife.81256
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where ‍n
X
t ‍ is the number of stimuli ‍X ‍ observed up to trial ‍t‍, that is, 

‍
nA

t =
t∑

i=1
xi

‍
, and 

‍
nB

t =
t∑

i=1
(1 − xi)

‍
. As 

more evidence is accumulated, the Bayesian posterior gradually narrows and converges towards the 
value of the stimulus generative probability (Figure 3c and d, grey lines).

The ways in which the Bayesian posterior is distorted, in our models, depend on the nature of the 
cost that weighs on the inference process. Although many assumptions could be made on the kind 
of constraint that hinders human inference, and on the cost it would entail in our framework, here we 
examine two costs that stem from two possible principles: that the cost is a function of the beliefs 
held by the subject, or that it is a function of the environment that the subject is inferring. We detail, 
below, these two costs.

a c

b

d

Figure 3. Illustration of the Bernoulli-observer models, with unpredictability and precision costs. (a) Precision cost (purple) and unpredictability cost 
(green lines) of a Beta distribution with parameters ‍α‍ and ‍β‍, as functions of the mean of the distribution, ‍α/(α + β)‍, and keeping the entropy constant. 
The precision cost is the negative of the entropy and it is thus constant, regardless of the mean of the distribution. The unpredictability cost is larger 
when the mean of the distribution is closer to 0.5 (i.e. when unpredictable environments are likely, under the distribution). Insets: Beta distributions with 
mean 0.2, 0.5, and 0.8, and constant entropy. (b) Costs as functions of the sample size parameter, ‍α + β‍. A larger sample size implies a higher precision 
and lower entropy, thus the precision cost increases as a function of the sample size, whereas the unpredictability cost is less sensitive to changes in this 
parameter. Insets: Beta distributions with mean 0.6 and sample size parameter, ‍α + β‍, equal to 5, 50, and 200. (c) Posteriors ‍P(p)‍ of an optimal observer 
(gray), a precision-cost observer (purple) and an unpredictability-cost observer (green lines), after the presentation of ten sequences of N = 50, 200, and 
400 observations sampled from a Bernoulli distribution of parameter 0.7. The posteriors of the optimal observer narrow as evidence is accumulated, and 
the different posteriors obtained after different sequences of observations are drawn closer to each other and to the correct probability. The posteriors 
of the unpredictability-cost observer also narrow and group together, but around a probability larger (less unpredictable) than the correct probability. 
Precise distributions are costly to the precision-cost observer and thus the posteriors do not narrow after long sequences of observations. Instead, 
the posteriors fluctuate with the recent history of the stimuli. (d) Expected probability ‍E[p]‍ resulting from the inference. The optimal observer (gray) 
converges towards the correct probability; the unpredictability-cost observer (green) converges towards a biased (larger) probability; and the precision-
cost observer (purple lines) does not converge, but instead fluctuates with the history of the stimuli.

https://doi.org/10.7554/eLife.81256
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Precision cost
A first hypothesis about the inference process of subjects is that the brain mobilizes resources to 
represent probability distributions, and that more ‘precise’ distributions require more resources. We 
write the cost associated with a distribution, ‍̂P(q)‍, as the negative of its entropy,

	﻿‍
Cp(P̂) = −H[P̂(q)] =

ˆ
P̂(q) ln P̂(q) dq,

‍�
(3)

which is a measure of the amount of certainty in the distribution. Wider (less concentrated) distribu-
tions provide less information about the probability parameter and are thus less costly than narrower 
(more concentrated) distributions (Figure 3b). As an extreme case, the uniform distribution is the least 
costly.

With this cost, the loss function (Equation 1) is minimized by the distribution equal to the product 
of the prior and the likelihood, raised to the exponent ‍1/(λ + 1)‍, and normalized, i.e.,

	﻿‍
P̂t+1(q) ∝

[
P̂t(q)p(xt+1|xt−m+1:t,q)

]1/(λ+1)
.
‍�

(4)

Since ‍λ‍ is strictly positive, the exponent is positive and lower than 1. As a result, the solution ‘flat-
tens’ the Bayesian posterior, and in the extreme case of an unbounded cost (‍λ → ∞‍) the posterior is 
the uniform distribution.

Furthermore, in the expression of our model subject’s posterior, the likelihood ‍p(xt+1|xt−m+1:t, q)‍ 
is raised after ‍k‍ trials to the exponent ‍1/(λ + 1)k+1

‍, it thus decays to zero as the number ‍k‍ of new 
stimuli increases. One can interpret this effect as gradually forgetting past observations. Specifically, 
we recover the predictions of leaky-integration models, in which remote patterns in the sequence of 
stimuli are discounted through an exponential filter (Yu and Cohen, 2008; Meyniel et al., 2016); here, 
we do not posit the gradual forgetting of remote observations, but instead we derive it as an optimal 
solution to a problem of constrained inference. We illustrate leaky integration in the case of a Bernoulli 
observer (‍m = 0‍): in this case, the posterior after ‍t‍ trials, ‍̂Pt(q)‍, is a Beta distribution,

	﻿‍ P̂t(q) ∝ qñA
t (1 − q)ñB

t ,‍� (5)

where ‍̃n
A
t ‍ and ‍̃n

B
t ‍ are exponentially-filtered counts of the number of stimuli A and B observed up to 

trial ‍t‍, i.e.,

	﻿‍
ñA

t =
t−1∑
k=0

(
1

λ + 1

)k
xt−k, and ñB

t =
t−1∑
k=0

(
1

λ + 1

)k
(1 − xt−k).

‍�
(6)

In other words, the solution to the constrained inference problem, with the precision cost, is similar 
to the Bayesian posterior (Equation 2), but with counts of the two stimuli that gradually ‘forget’ 
remote observations (in the absence of a cost, that is, ‍λ = 0‍, we have ‍̃n

A
t = nA

t ‍ and ‍̃n
B
t = nB

t ‍, and thus 
we recover the Bayesian posterior). As a result, these counts fluctuate with the recent history of the 
stimuli. Consequently, the posterior ‍̂Pt(q)‍ is dominated by the recent stimuli: it does not converge, but 
instead fluctuates with the recent stimulus history (Figure 3c and d, purple lines; compare with the 
green and gray lines). Hence, this model implies predictions about subsequent stimuli that depend on 
the stimulus history, i.e., it predicts sequential effects.

Unpredictability cost
A different hypothesis is that the subjects favor, in their inference, parameter vectors ‍q‍ that corre-
spond to more predictable outcomes. We quantify the outcome unpredictability by the Shannon 
entropy (Shannon, 1948) of the outcome implied by the vector of parameters ‍q‍, which we denote by 

‍H(X; q)‍. (In the Bernoulli-observer case, ‍H(X; q) = −q ln q − (1 − q) ln(1 − q)‍; for the Markov-observer 
cases, see Methods.) The cost associated with the distribution ‍̂P(q)‍ is the expectation of this quantity 
averaged over beliefs, i.e.,

	﻿‍
Cu(P̂) = EP̂[H(X; q)] =

ˆ
H(X; q)P̂(q)dq,

‍�
(7)

https://doi.org/10.7554/eLife.81256
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which we call the ‘unpredictability cost’. For a Bernoulli observer, a posterior concentrated on extreme 
values of the Bernoulli parameter (toward 0 or 1), thus representing more predictable environments, 
comes with a lower cost than a posterior concentrated on values of the Bernoulli parameter close to 
0.5, which correspond to the most unpredictable environments (Figure 3a).

After ‍t‍ trials, the loss function (Equation 1) under this cost is minimized by the posterior

	﻿‍ P̂t(q) ∝ P∗
t (q)e−tλH(X;q),‍� (8)

i.e., the product of the Bayesian posterior, which narrows with ‍t‍ around the stimulus generative prob-
ability, and of a function that is larger for values of ‍q‍ that imply less entropic (i.e. more predictable) 
environments (see Methods). In short, with the unpredictability cost the model subject’s posterior is 
‘pushed’ towards less entropic values of ‍q‍.

In the Bernoulli case (‍m = 0‍), the posterior after ‍t ‍ stimuli has a global maximum, ‍q
∗(nt/t)‍, that 

depends on the proportion ‍nt/t‍ of stimuli A observed up to trial ‍t ‍. As the number of presented 
stimuli ‍t ‍ grows, the posterior ‍̂Pt‍ becomes concentrated around this maximum. The proportion 

‍nt/t‍ naturally converges to the stimulus generative probability, ‍p‍, thus our subject’s inference 
converges towards the value ‍q

∗(p)‍ which is different from the true value ‍p‍, in the non-equiprobable 
case (‍p ̸= .5‍). The equiprobable case (‍p = .5‍) is singular, in that with a weak cost (‍λ < 1‍) the inferred 
probability is unbiased (‍q

∗(p) = .5‍), while with a strong cost (‍λ > 1‍) the inferred probability does 
not converge but instead alternates between two values above and below 0.5; see Prat-Carrabin 
et  al., 2021a. In other words, except in the equiprobable case, the inference converges but it 
is biased, i.e., the posterior peaks at an incorrect value of the stimulus generative probability 
(Figure 3c and d, green lines). This value is closer to the extremes (0 and 1) than the stimulus 
generative probability, that is, it implies an environment more predictable than the actual one 
(Figure 3d).

In the case of a Markov observer (‍m > 0‍), the posterior also converges to a vector of parameters ‍q‍ 
which implies not only a bias but also that the conditional probabilities of a stimulus A (conditioned 
on different stimulus histories) are not equal. The prediction of the next stimulus being A on a given 
trial depends on whether the preceding stimulus was A or B: this model therefore predicts sequential 
effects. We further examine below the behavior of this model in the cases of a Bernoulli observer and 
of different Markov observers. We refer the reader interested in more details on the Markov models, 
including their mathematical derivations, to the Methods section.

In short, with the unpredictability-cost models, when ‍p ̸= 0.5‍, the inference process converges to 
an asymptotic posterior ‍q

∗(p)‍ which does not itself depend on the history of the stimulus, but that is 
biased (Figure 3c, d, green lines). In particular, for Markov observers (‍m > 0‍), the asymptotic poste-
rior corresponds to an erroneous belief about the dependency of the stimulus on the recent stimulus 
history, which results in sequential effects in behavior.

Overview of the inference models
Although the two families of models derived from the two costs both potentially generate sequential 
effects, they do so by giving rise to qualitatively different inference processes. Under the unpredict-
ability cost, the inference converges to a posterior that, in the Bernoulli case (‍m = 0‍), implies a biased 
estimate of the stimulus generative probability (Figure 3d, green lines), while in the Markov case 
(‍m > 0‍) it implies the belief that there are serial dependencies in the stimuli: predictions therefore 
depend on the recent stimulus history. By contrast, the precision cost prevents beliefs from converging 
(Figure 3c, purple lines). As a result, the subject’s predictions vary with the recent stimulus history 
(Figure 3d). This inference process amounts to an exponential discount of remote observations, or 
equivalently, to the overweighting of recent observations (Equation 6).

To investigate in more detail the sequential effects that these two costs produce, we implement 
two families of inference models derived from the two costs. Each model is characterized by the type 
of cost (unpredictability cost or precision cost), and by the assumed Markov order (‍m‍): we examine 
the case of a Bernoulli observer (‍m = 0‍) and three cases of Markov observers (with ‍m =‍ 1, 2, and 3). 
We thus obtain ‍2 × 4 = 8‍ models of inference. Each of these models has one parameter ‍λ‍ controlling 
the weight of the cost. (We also examine a ‘hybrid’ model that combines the two costs; see below.)

https://doi.org/10.7554/eLife.81256
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Response-selection strategy
We assume that the subject’s response on a given trial depends on the inferred posterior according 
to a generalization of ‘probability matching’ implemented in other studies (Battaglia et al., 2011; 
Yu and Huang, 2014; Prat-Carrabin et al., 2021b). In this response-selection strategy, the subject 
predicts A with the probability ‍̄p

κ
t /(p̄κt + (1 − p̄t)κ)‍, where ‍̄pt‍ is the expected probability of a stimulus 

A derived from the posterior, i.e., 
‍
p̄t ≡

ˆ
p(xt+1 = 1|xt−m+1:t, q)P̂t(q)dq

‍
. The single parameter ‍κ‍ controls 

the randomness of the response: with ‍κ = 0‍ the subject predicts A and B with equal probability; 
with ‍κ = 1‍ the response-selection strategy corresponds to probability matching, that is, the subject 
predicts A with probability ‍̄pt‍; and as ‍κ‍ increases toward infinity the choices become optimal, that is, 
the subjects predicts A if the expected probability of observing a stimulus A, ‍̄pt‍, is greater than 0.5, 
and predicts B if it is lower than 0.5 (if ‍̄pt = 0.5‍ the subject chooses A or B with equal probability). In 
our investigations, we also implement several other response-selection strategies, including one in 
which subjects have a propensity to repeat their preceding response, or conversely, to alternate; these 
analyses do not change our conclusions (see Methods).

Model fitting favors Markov-observer models
Each of our eight models has two parameters: the factor weighting the cost, ‍λ‍, and the exponent 
of the generalized probability-matching, ‍κ‍. We fit the parameters of each model to the responses 
of each subject, by maximizing their likelihoods. We find that 60% of subjects are best fitted by one 
of the unpredictability-cost models, while 40% are best fitted by one of the precision-cost models. 
When pooling the two types of cost, 65% of subjects are best fitted by a Markov-observer model. We 
implement a ‘Bayesian model selection’ procedure (Stephan et al., 2009), which takes into account, 
for each subject, the likelihoods of all the models (and not only the maximum among them) in order to 
obtain a Bayesian posterior over the distribution of models in the general population (see Methods). 
The derived expected probability of unpredictability-cost models is 57% (and 43% for precision-cost 
models) with an exceedance probability (i.e. probability that unpredictability-cost models are more 
frequent in the general population) of 78%. The expected probability of Markov-observer models, 
regardless of the cost used in the model, is 70% (and 30% for Bernoulli-observer models) with an 
exceedance probability (i.e. probability that Markov-observer models are more frequent in the general 
population) of 98%. These results indicate that the responses of subjects are generally consistent with 
a Markov-observer model, although the stimuli used in the experiment are Bernoulli-distributed. As 
for the unpredictability-cost and the precision-cost families of models, Bayesian model selection does 
not provide decisive evidence in favor of either model, indicating that they both capture some aspects 
of the responses of the subjects. Below, we examine more closely the behaviors of the models, and 
point to qualitative differences between the predictions resulting from each model family.

Before turning to these results, we validate the robustness of our model-fitting procedure with 
several additional analyses. First, we estimate a confusion matrix to examine the possibility that the 
model-fitting procedure could misidentify the models which generated test sets of responses. We find 
that the best-fitting model corresponds to the true model in at least 70% of simulations (the chance 
level is 12.5%=1/8 models), and actually more than 90% for the majority of models (see Appendix).

Second, we seek to verify whether the best-fitting cost factor, ‍λ‍, that we obtain for each subject 
is consistent across the range of probabilities tested. Specifically, we fit separately the models to 
the responses obtained in the blocks of trials whose stimulus generative probability was ‘medium’ 
(between 0.3 and 0.7, included) on the one hand, and to the responses obtained when the prob-
ability was ‘extreme’ (below 0.3, and above 0.7) on the other hand; and we compare the values of 
the best-fitting cost factors ‍λ‍ in these two cases. More precisely, for the precision-cost family, we 
look at the inverse of the decay time, ‍ln(1 + λ)‍, which is the inverse of the characteristic time over 
which the model subject ‘forgets’ past observations. With both families of models, we find that on 
a logarithmic scale the parameters in the medium- and extreme-probabilities cases are significantly 
correlated across subjects (Pearson’s ‍r‍, precision-cost models: 0.75, p-value: 1e-4; unpredictability-
cost models: ‍r = 0.47‍, p-value: .036). In other words, if a subject is best fitted by a large cost factor in 
medium-probabilities trials, he or she is likely to be also best fitted by a large cost factor in extreme-
probabilities trials. This indicates that our models capture idiosyncratic features of subjects that gener-
alize across conditions instead of varying with the stimulus probability (see Appendix).

https://doi.org/10.7554/eLife.81256
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Third, as mentioned above we examine a variant of the response-selection strategy in which the 
subject sometimes repeats the preceding response, or conversely alternates and chooses the other 
response, instead of responding based on the inferred probability of the next stimulus. This propen-
sity to repeat or alternate does not change the best-fitting inference model of most subjects, and the 
best-fitting values of the parameters ‍λ‍ and ‍κ‍ are very stable when allowing or not for this propensity. 
This analysis supports the results we present here, and speaks to the robustness of the model-fitting 
procedure (see Methods).

Finally, as the unpredictability-cost family and the precision-cost family of models both seem to 
capture the responses of a sizable share of the subjects, one might assume that the behavior of most 
subjects actually fall ‘somewhere in between’, and would be best accounted for by a hybrid model 
combining the two costs. In our investigations, we have implemented such a model, whereby the 
subject’s approximate posterior ‍̂Pt‍ results from the minimization of a loss function that includes both a 
precision cost, with weight ‍λp‍, and an unpredictability cost, with weight ‍λu‍ (and the response-selection 
strategy is the generalized probability matching, with parameter ‍κ‍). We do not find that most subjects’ 
responses are better fitted (as measured by the Bayesian Information Criterion Schwarz, 1978) by a 
combination of the two costs: instead, for more than two thirds of subjects, the best-fitting model 
features just one cost (see Methods). In other words, the two cost seems to capture different aspects 
of the behavior that are predominant in different subpopulations. Below, we examine the behavioral 
patterns resulting from each cost type, in comparison with the behavior of the subjects.

Models of costly inference reproduce the attractive effect of the most 
recent stimulus
We now examine the behavioral patterns resulting from the models. All the models we consider 
predict that the proportion of predictions A, ‍̄p(A)‍, is a smooth, increasing function of the stimulus 
generative probability (when ‍λ < ∞‍ and ‍0 < κ < ∞‍; Figure 4a–d, grey lines), thus we focus, here, 
on the ability of the models to reproduce the subjects’ sequential effects. With the unpredictability-
cost model of a Bernoulli observer (‍m = 0‍), the belief of the model subject, as mentioned above, 
asymptotically converges in non-equiprobable cases to an erroneous value of the stimulus generative 
probability (Figure 3d, green lines). After a large number of observations (such as the 200 ‘passive’ 
trials, in our task), the sensitivity of the belief to new observations becomes almost imperceptible; as 
a result, this model predicts practically no sequential effects (Figure 4b), that is, ‍̄p(A|A) ≃ p̄(A|B)‍. With 
the unpredictability-cost model of a Markov observer (e.g. ‍m = 1‍), the belief of the model subject 
also converges, but to a vector of parameters ‍q‍ that implies a sequential dependency in the stim-
ulus, that is, ‍qA ̸= qB‍, resulting in sequential effects in predictions, that is, ‍̄p(A|A) ̸= p̄(A|B)‍. The param-
eter vector ‍q‍ yields a more predictable (less entropic) environment if the probability conditional 
on the more frequent outcome (say, A) is less entropic than the probability conditional on the less 
frequent outcome (B). This is the case if the former is greater than the latter, resulting in the inequality 

‍̄p(A|A) > p̄(A|B)‍, that is, in sequential effects of the attractive kind (Figure 4d). (The case in which B is 
the more frequent outcome results in the inequality ‍̄p(B|B) > p̄(B|A)‍, i.e., ‍1 − p̄(A|B) > 1 − p̄(A|A)‍, i.e., 
the same, attractive sequential effects.)

Turning to the precision-cost models, we have noted that in these models the posterior fluctuates 
with the recent history of the stimuli (Figure 3c): as a result, sequential effects are obtained, even with 
a Bernoulli observer (‍m = 0‍; Figure 4a). The most recent stimulus has the largest weight in the expo-
nentially filtered counts that determine the posterior (Equation 6), thus the model subject’s prediction 
is biased towards the last stimulus, that is, the sequential effect is attractive (‍̄p(A|A) > p̄(A|B)‍). With the 
traditional probability-matching response-selection strategy (i.e. ‍κ = 1‍), the strength of the attrac-
tive effect is the same across all stimulus generative probabilities (i.e. the difference ‍̄p(A|A) − p̄(A|B)‍ 
is constant; Figure 4a, dotted lines and light-red dots). With the generalized probability-matching 
response-selection strategy, if ‍κ > 1‍, proportions below and above 0.5 are brought closer to the 
extremes (0 and 1, respectively), resulting in larger sequential effects for values of the stimulus gener-
ative probability closer to 0.5 (Figure 4a, solid lines and red dots; the model is simulated with ‍κ = 2.8‍, 
a value representative of the subjects’ best-fitting values for this parameter). We also find stronger 
sequential effects closer to the equiprobable case in subjects’ data (Figure 2b).

The precision-cost model of a Markov observer (‍m = 1‍) also predicts attractive sequential effects 
(Figure 4c). While the behavior of the Bernoulli observer (with a precision cost) is determined by two 

https://doi.org/10.7554/eLife.81256
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Figure 4. The precision-cost and unpredictability-cost models reproduce the subjects’ attractive sequential effects. (a–h) Left subpanels: proportion of 
predictions A as a function of the stimulus generative probability, conditional on observing A (blue line) or B (orange line) on the preceding trial, and 
unconditional (grey line). Right subpanels: difference between the proportion of predictions A conditional on observing A, and conditional on observing 
B, ‍̄p(A|A) − p̄(A|B)‍. In all panels this difference is positive, indicating an attractive sequential effect (i.e. observing A at the preceding trial increases the 
probability of predicting A). (a–d) Models with the precision cost (a,c) or the unpredictability cost (b,d), and with a Bernoulli observer (‍m = 0‍; a,b) or a 
Markov observer with ‍m = 1‍ (c,d). (a) Behavior with the generalized probability-matching response-selection strategy with ‍κ = 2.8‍ (solid lines, red dots) 
and with ‍κ = 1‍ (dotted lines, light-red dots). (e,f) Pooled responses of the subjects best-fitted by a precision-cost model (e) or by an unpredictability-
cost model (f). Right subpanels: bars are twice the square root of the sum of the two squared standard errors of the means (for each point, total n: 
e: 1393, f: 2189 to 2388). (g,h) Pooled responses of the models that best fit the corresponding subjects in panels (e,f). (i,j) Pooled responses of the 
unpredictability-cost models (i) and of the precision-cost models (j), fitted to the subjects best-fitted, respectively, by precision-cost models, and by 
unpredictability-cost models.

https://doi.org/10.7554/eLife.81256


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Prat-Carrabin et al. eLife 2024;13:e81256. DOI: https://doi.org/10.7554/eLife.81256 � 13 of 42

exponentially-filtered counts of the two possible stimuli (Equation 6), that of the Markov observer 
with ‍m = 1‍ depends on four exponentially filtered counts of the four possible pairs of stimuli. After 
observing a stimulus B, the belief that the following stimulus should be A or B is determined by the 
exponentially filtered counts of the pairs BA and BB. If ‍p‍ is large, i.e., if the stimulus B is infrequent, 
then the BA and BB pairs are also infrequent and the corresponding counts are close to zero: the 
model subject thus behaves as if only very little evidence had been observed about the transitions 
B to A and B to B in this case, resulting in a proportion of predictions A conditional on a preceding 
B, ‍̄p(A|B)‍, close to 0.5 (Figure 4c, orange line). Consequently, the sequential effects are stronger for 
values of the stimulus generative probabilities closer to the extreme (Figure 4c, red dots).

Both families of costs are thus able to produce attractive sequential effects, albeit with some qual-
itative differences. (In Figure 4a–d we show the behaviors resulting from the two costs for a Bernoulli 
observer and a Markov observer of order ‍m = 1‍; the Markov observers of higher order exhibit qualita-
tively similar behaviors; see Methods.) As the model fitting indicates that different groups of subjects 
are best fitted by models belonging to the two families, we examine separately the behaviors of 
the subjects whose responses are best fitted by each of the two costs (Figure 4e and f), in compar-
ison with the behaviors of the corresponding best-fitting models (Figure 4g and h). This provides a 
finer understanding of the behavior of subjects than the group average shown in Figure 2. For the 
subjects best fitted by precision-cost models, the proportion of predictions A, ‍̄p(A)‍, when the stimulus 
generative probability is close to 0.5, is a less steep function of this probability than for the subjects 
best-fitted by unpredictability-cost models (Figure 4e and f, grey lines); furthermore, their sequential 
effects are larger (as measured by the difference ‍̄p(A|A) − p̄(A|B)‍), and do not depend much on the 
stimulus generative probability (Figure 4e and f, red dots). The corresponding models reproduce the 
behavioral patterns of the subjects that they best fit (Figure 4g and h). Each family of models seems to 
capture specific behaviors exhibited by the subjects: when fitting the unpredictability-cost models to 
the responses of the subjects that are best fitted by precision-cost models, and conversely when fitting 
the precision-cost models to the responses of the subjects that are best fitted by unpredictability-
cost models, the models do not reproduce well the subjects’ behavioral patterns (Figure 4i and j). 
The precision-cost models, however, seem slightly better than the unpredictability-cost models at 
capturing the behavior of the subjects that they do not best fit (Figure 4, compare panel j to panel 
f, and panel i to panel e). Substantiating this observation, the examination of the distributions of the 
models’ BICs across subjects shows that when fitting the models onto the subjects that they do not 
best fit, the precision-cost models fare better than the unpredictability-cost models (see Appendix).

Beyond the most recent stimulus: patterns of higher-order sequential 
effects
Notwithstanding the quantitative differences just presented, both families of models yield qualita-
tively similar attractive sequential effects: the model subjects’ predictions are biased towards the 
preceding stimulus. Does this pattern also apply to the longer history of the stimulus, i.e., do more 
distant trials also influence the model subjects’ predictions? To investigate this hypothesis, we examine 
the difference between the proportion of predictions A after observing a sequence of length ‍n‍ that 
starts with A, minus the proportion of predictions A after the same sequence, but starting with B, i.e., 

‍̄p(A|Ax) − p̄(A|Bx)‍, where ‍x‍ is a sequence of length ‍n − 1‍, and ‍Ax‍ and ‍Bx‍ denote the same sequence 
preceded by A and by B. This quantity enables us to isolate the influence of the ‍n‍-to-last stimulus on 
the current prediction. If the difference is positive, the effect is ‘attractive’; if it is negative, the effect 
is ‘repulsive’ (in this latter case, the presentation of an A decreases the probability that the subjects 
predicts A in a later trial, as compared to the presentation of a B); and if the difference is zero there is 
no sequential effect stemming from the ‍n‍-to-last stimulus. The case ‍n = 1‍ corresponds to the immedi-
ately preceding stimulus, whose effect we have shown to be attractive, i.e., ‍̄p(A|A) − p̄(A|B) > 0‍, in the 
responses both of the best-fitting models and of the subjects (Figures 2b, 4g and h).

We investigate the effect of the ‍n‍-to-last stimulus on the behavior of the two families of models, 
with ‍n = 1‍, ‍2‍, and ‍3‍. We present here the main results of this investigation; we refer the reader to 
Methods for a more detailed analysis. With unpredictability-cost models of Markov order ‍m‍, there 
are non-vanishing sequential effects stemming from the ‍n‍-to-last stimulus only if the Markov order is 
greater than or equal to the distance from this stimulus to the current trial, i.e., if ‍m ≥ n‍. In this case, 
the sequential effects are attractive (Figure 5).

https://doi.org/10.7554/eLife.81256
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With precision-cost models, the ‍n‍-to-last stimuli yield non-vanishing sequential effects regardless 
of the Markov order, ‍m‍. With ‍n = 1‍, the effect is attractive, i.e., ‍̄p(A|A) − p̄(A|B) > 0‍. With ‍n = 2‍ (second-
to-last stimulus), the effect is also attractive, i.e., in the case of the pair of sequences AA and BA, 

‍̄p(A|AA) − p̄(A|BA) > 0‍ (Figure 5a). By symmetry, the difference is also positive for the other pair of 
relevant sequences, AB and BB (e.g. we note that ‍̄p(A|AB) = 1 − p̄(B|AB)‍, and that ‍̄p(B|AB)‍ when the 
probability of A is ‍p‍ is equal to ‍̄p(A|BA)‍ when the probability of A is ‍1 − p‍. We detail in Methods such 
relations between the proportions of predictions A or B in different situations. These relations result 
in the symmetries of Figure 2, for the sequential effect of the last stimulus, while for higher-order 
sequential effects they imply that we do not need to show, in Figure  5, the effects following all 
possible past sequences of two or three stimuli, as the ones we do not show are readily derived from 
the ones we do.)

As for the third-to-last stimulus (‍n = 3‍), it can be followed by four different sequences of length 
two, but we only need to examine two of these four, for the reasons just presented. We find that for 
the precision-cost models, with all the Markov orders we examine (from 0 to 3), the probability of 
predicting A after observing the sequence AAA is greater than that after observing the sequence 
BAA, i.e., ‍̄p(A|AAA) − p̄(A|BAA) > 0‍, that is, there is an attractive sequential effect of the third-to-last 
stimulus if the sequence following it is AA (and, by symmetry, if it is BB; Figure 5b). So far, thus, we 
have found only attractive effects. However, the results are less straightforward when the third-to-last 
stimulus is followed by the sequence BA. In this case, for a Bernoulli observer (‍m = 0‍), the effect is also 
attractive: ‍̄p(A|ABA) − p̄(A|BBA) > 0‍ (Figure 5c, white circles). With Markov observers (‍m ≥ 1‍), over a 
range of stimulus generative probability ‍p‍, the effect is repulsive: ‍̄p(A|ABA) − p̄(A|BBA) < 0‍, that is, the 
presentation of an A decreases the probability that the model subject predicts A three trials later, as 

a b c

Figure 5. Higher-order sequential effects: the precision-cost model of a Markov observer predicts a repulsive effect of the third-to-last stimulus. 
Sequential effect of the second-to-last (a) and third-to-last (b,c) stimuli, in the responses of the precision-cost model of a Bernoulli observer (‍m = 0‍; 
white circles), of the precision-cost model of a Markov observer with ‍m = 1‍ (filled circles), and of the unpredictability-cost model of a Markov observer 
with ‍m = 3‍ (crosses). (a) Difference between the proportion of prediction A conditional on observing AA, and conditional on observing BA, i.e., 

‍̄p(A|AA) − p̄(A|BA)‍, as a function of the stimulus generative probability. With the three models, this difference is positive, indicating an attractive 
sequential effect of the second-to-last stimulus. (b) Difference between the proportion of prediction A conditional on observing AAA, and conditional 
on observing BAA, i.e., ‍̄p(A|AAA) − p̄(A|BAA)‍. The positive difference indicates an attractive sequential effect of the third-to-last stimulus in this case. 
(c) Difference between the proportion of prediction A conditional on observing ABA, and conditional on observing BBA, i.e., ‍̄p(A|ABA) − p̄(A|BBA)‍. 
With the precision-cost model of a Markov observer, the negative difference when the stimulus generative probability is lower than 0.8 indicates a 
repulsive sequential effect of the third-to-last stimulus in this case, while when the probability is greater than 0.8, and with the predictability-cost model 
of a Bernoulli observer and with the unpredictability-cost model of a Markov observer, the positive difference indicates an attractive sequential effect of 
the third-to-last stimulus.
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compared to the presentation of a B (Figure 5c, filled circles). The occurrence of the repulsive effect 
in this particular case is a distinctive trait of the precision-cost models of Markov observers (‍m ≥ 1‍); we 
do not obtain any repulsive effect with any of the unpredictability-cost models, nor with the precision-
cost model of a Bernoulli observer (‍m = 0‍).

Subjects’ predictions exhibit higher-order repulsive effects
We now examine the sequential effects in subjects’ responses, beyond the attractive effect of the 
preceding stimulus (‍n = 1‍; discussed above). With ‍n = 2‍ (second-to-last stimulus), for the majority 

a b c

d e

Figure 6. Patterns of attractive and repulsive sequential effects in subjects’ responses. (a) Difference between the proportion of prediction A conditional 
on observing the sequence AA, and conditional on observing BA, i.e., ‍̄p(A|AA) − p̄(A|BA)‍, as a function of the stimulus generative probability. This 
difference is in most cases positive, indicating an attractive sequential effect of the second-to-last stimulus. (b) Difference between the proportion of 
prediction A conditional on observing AAA, and conditional on observing BAA, i.e., ‍̄p(A|AAA) − p̄(A|BAA)‍. This difference is positive in most cases, 
indicating an attractive sequential effect of the third-to-last stimulus. (c) Difference between the proportion of prediction A conditional on observing 
ABA, and conditional on observing BBA, i.e., ‍̄p(A|ABA) − p̄(A|BBA)‍. This difference is negative in most cases, indicating a repulsive sequential effect 
of the third-to-last stimulus. (d) Differences, averaged over all tested stimulus generative probabilities, between the proportion of predictions A 
conditional on sequences of up to three past observations, minus the unconditional proportion. The proportion conditional on a sequence is an average 
of the two proportions conditional on the same sequence preceded by another, ‘older’ observation, A or B, resulting in a binary-tree structure in this 
representation. If this additional past observation is A (respectively, B), we connect the two sequences with a solid line (respectively, a dotted line). In 
most cases, conditioning on an additional A increases the proportion of predictions A (in comparison to conditioning on an additional B), indicating an 
attractive sequential effect, except when the additional observation precedes the sequence BA (or its symmetric AB), in which cases repulsive sequential 
effects are observed (dotted line ‘above’ solid line). (e) Same as (c), with subjects split in two groups: the subjects best-fitted by precision-cost models 
(left) and the subjects best-fitted by unpredictability-cost models (right). In panels a-c and e, the filled circles indicate that the p-value of the Fisher exact 
test is below 0.05, and the filled squares indicate that the p-value with Bonferroni-Holm-Šidák correction is below 0.05. Bars are twice the square root of 
the sum of the two squared standard errors of the means (for each point, total n: a: 178 to 3584, b: 37 to 3394, c: 171 to 1868, e: 63 to 1184). In all panels, 
the responses of all the subjects are pooled together.
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of the 19 stimulus generative probabilities ‍p‍, we find attractive sequential effects: the difference 

‍̄p(A|AA) − p̄(A|BA)‍ is significantly positive (Figure 6a; p-values <0.01 for 11 stimulus generative prob-
abilities, <0.05 for 13 probabilities; subjects pooled). With ‍n = 3‍ (third-to-last stimulus), we also find 
significant attractive sequential effects in subjects’ responses for some of the stimulus generative prob-
abilities, when the third-to-last stimulus is followed by the sequence AA (Figure 6b; p-values <0.01 for 
four probabilities, <0.05 for seven probabilities). When it is instead followed by the sequence BA, we 
find that for eight stimulus generative probabilities, all between 0.25 and 0.75, there is a significant 
repulsive sequential effect: ‍̄p(A|ABA) − p̄(A|BBA) < 0‍ (p-values <0.01 for six probabilities, <0.05 for 
eight probabilities; subjects pooled). Thus, in these cases, the occurrence of A as the third-to-last stim-
ulus increases (in comparison with the occurrence of a B) the proportion of the opposite prediction, 
B. For the remaining stimulus generative probabilities, this difference is in most cases also negative 
although not significantly different from zero (Figure 6c). (An across-subjects analysis yields similar 
results; see Supplementary Materials.) Figure 6d summarizes subjects’ sequential effects, and exhibits 
the attractive and repulsive sequential effects in their responses (compare solid and dotted lines). (In 
this tree-like representation, we show averages across the stimulus generative probabilities; a figure 
with the individual ‘trees’ for each probability is provided in the Appendix.)

The repulsive sequential effect of the third-to-last stimulus in subjects’ predictions only occurs when 
the third-to-last stimulus is A followed by the sequence BA. It is also only in this case that the repulsive 
effect appears with the precision-cost models of a Markov observer (while it never appears with the 
unpredictability-cost models). This qualitative difference suggests that the precision-cost models offer 
a better account of sequential effects in subjects. However, model-fitting onto the overall behavior 
presented above showed that a fraction of the subjects is better fitted by the unpredictability-cost 
models. We investigate, thus, the presence of a repulsive effect in the predictions of the subjects best 
fitted by the precision-cost models, and of those best fitted by the unpredictability-cost models. For 
the subjects best fitted by the precision-cost models, we find (expectedly) that there is a significant 
repulsive sequential effect of the third-to-last stimulus (‍̄p(A|ABA) − p̄(A|BBA) < 0‍; p-values <0.01 for 
two probabilities, <0.05 for four probabilities; subjects pooled; Figure 6e, left panel). For the subjects 
best fitted by the unpredictability-cost models (a family of model that does not predict any repulsive 
sequential effects), we also find, perhaps surprisingly, a significant repulsive effect of the third-to-last 
stimulus (p-values <0.01 for three probabilities, <0.05 for five probabilities; subjects pooled), which 
demonstrates the robustness of this effect (Figure 6e, right panel). Thus, in spite of the results of the 
model-selection procedure, some sequential effects in subjects’ predictions support only one of the 
two families of model. Regardless of the model that best fits their overall predictions, the behavior of 
the subjects is consistent only with the precision-cost family of models with Markov order equal to or 
greater than 1, that is, with a model of inference of conditional probabilities hampered by a cognitive 
cost weighing on the precision of belief distributions.

Discussion
We investigated the hypothesis that sequential effects in human predictions result from cognitive 
constraints hindering the inference process carried out by the brain. We devised a framework of 
constrained inference, in which the model subject bears a cognitive cost when updating its belief 
distribution upon the arrival of new evidence: the larger the cost, the more the subject’s posterior 
differs from the Bayesian posterior. The models we derive from this framework make specific predic-
tions. First, the proportion of forced-choice predictions for a given stimulus should increase with the 
stimulus generative probability. Second, most of those models predict sequential effects: predictions 
also depend on the recent stimulus history. Models with different types of cognitive cost resulted in 
different patterns of attractive and repulsive effects of the past few stimuli on predictions. To compare 
the predictions of constrained inference with human behavior, we asked subjects to predict each next 
outcome in sequences of binary stimuli. We manipulated the stimulus generative probability in blocks 
of trials, exploring exhaustively the probability range from 0.05 to 0.95 by increments of 0.05. We 
found that subjects’ predictions depend on both the stimulus generative probability and the recent 
stimulus history. Sequential effects exhibited both attractive and repulsive components which were 
modulated by the stimulus generative probability. This behavior was qualitatively accounted for by a 
model of constrained inference in which the subject infers the transition probabilities underlying the 
sequences of stimuli and bears a cost that increases with the precision of the posterior distributions. 
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Our study proposes a novel theoretical account of sequential effects in terms of optimal inference 
under cognitive constraints and it uncovers the richness of human behavior over a wide range of stim-
ulus generative probabilities.

The notion that human decisions can be understood as resulting from a constrained optimization 
has gained traction across several fields, including neuroscience, cognitive science, and economics. 
In neuroscience, a voluminous literature that started with Attneave, 1954 and Barlow, 1961 inves-
tigates the idea that perception maximizes the transmission of information, under the constraint of 
costly and limited neural resources (Laughlin, 1981; Laughlin et al., 1998; Simoncelli and Olshausen, 
2001); related theories of ‘efficient coding’ account for the bias and the variability of perception 
(Ganguli and Simoncelli, 2016; Wei and Stocker, 2015; Wei and Stocker, 2017; Prat-Carrabin and 
Woodford, 2021c). In cognitive science and economics, ‘bounded rationality’ is a precursory concept 
introduced in the 1950s by Herbert Simon, who defines it as “rational choice that takes into account 
the cognitive limitations of the decision maker — limitations of both knowledge and computational 
capacity” (Simon, 1997). For Gigerenzer, these limitations promote the use of heuristics, which are ‘fast 
and frugal’ ways of reasoning, leading to biases and errors in humans and other animals (Gigerenzer 
and Goldstein, 1996; Gigerenzer and Selten, 2002). A range of more recent approaches can be 
understood as attempts to specify formally the limitations in question, and the resulting trade-off. The 
‘resource-rational analysis’ paradigm aims at a unified theoretical account that reconciles principles of 
rationality with realistic constraints about the resources available to the brain when it is carrying out 
computations (Griffiths et al., 2015). In this approach, biases result from the constraints on resources, 
rather than from ‘simple heuristics’ (see Lieder and Griffiths, 2019 for an extensive review). For 
instance, in economics, theories of ‘rational inattention’ propose that economic agents optimally allo-
cate resources (a limited amount of attention) to make decisions, thereby proposing new accounts 
of empirical findings in the economic literature (Sims, 2003; Woodford, 2009; Caplin et al., 2019; 
Gabaix, 2017; Azeredo da Silveira and Woodford, 2019; Azeredo da Silveira et al., 2020).

Our study puts forward a ‘resource-rational’ account of sequential effects. Traditional accounts 
since the 1960s attribute these effects to a belief in sequential dependencies between successive 
outcomes (Edwards, 1961; Matthews and Sanders, 1984) (potentially ‘acquired through life expe-
rience’ Ayton and Fischer, 2004), and more generally to the incorrect models that people assume 
about the processes generating sequences of events (see Oskarsson et al., 2009 for a review; similar 
rationales have been proposed to account for suboptimal behavior in other contexts, for example 
in exploration-exploitation tasks Navarro et al., 2016). This traditional account was formalized, in 
particular, by models in which subjects carry out a statistical inference about the sequence of stimuli 
presented to them, and this inference assumes that the parameters underlying the generating process 
are subject to changes (Yu and Cohen, 2008; Wilder et al., 2009; Zhang et al., 2014; Meyniel et al., 
2016). In these models, sequential effects are thus understood as resulting from a rational adaptation 
to a changing world. Human subjects indeed dynamically adapt their learning rate when the environ-
ment changes (Payzan-LeNestour et al., 2013; Meyniel and Dehaene, 2017; Nassar et al., 2010), 
and they can even adapt their inference to the statistics of these changes (Behrens et al., 2007; Prat-
Carrabin et al., 2021b). However, in our task and in many previous studies in which sequential effects 
have been reported, the underlying statistics are in fact not changing across trials. The models just 
mentioned thus leave unexplained why subjects’ behavior, in these tasks, is not rationally adapted to 
the unchanging statistics of the stimulus.

What underpins our main hypothesis is a different kind of rational adaptation: one, instead, to the 
‘cognitive limitations of the decision maker’, which we assume hinder the inference carried out by the 
brain. We show that rational models of inference under a cost yield rich patterns of sequential effects. 
When the cost varies with the precision of the posterior (measured here by the negative of its entropy, 
Equation 3), the resulting optimal posterior is proportional to the product of the prior and the like-
lihood, each raised to an exponent ‍1/(λ + 1)‍ (Equation 4). Many previous studies on biased belief 
updating have proposed models that adopt the same form except for the different exponents applied 
to the prior and to the likelihood (Grether, 1980; Matsumori et al., 2018; Benjamin, 2019). Here, 
with the precision cost, both quantities are raised to the same exponent and we note that in this case 
the inference of the subject amounts to an exponentially decaying count of the patterns observed in 
the sequence of stimuli, which is sometimes called ‘leaky integration’ in the literature (Yu and Cohen, 
2008; Wilder et al., 2009; Jones et al., 2013; Meyniel et al., 2016). The models mentioned above, 
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that posit a belief in changing statistics, indeed are well approximated by models of leaky integration 
(Yu and Cohen, 2008; Meyniel et al., 2016), which shows that the exponential discount can have 
different origins. Meyniel et  al., 2016 show that the precision-cost, Markov-observer model with 
‍m = 1‍ (named ‘local transition probability model’ in this study) accounts for a range of other findings, 
in addition to sequential effects, such as biases in the perception of randomness and patterns in 
the surprise signals recorded through EEG and fMRI. Here we reinterpret these effects as resulting 
from an optimal inference subject to a cost, rather than from a suboptimal erroneous belief in the 
dynamics of the stimulus’ statistics. In our modeling approach, the minimization of a loss function 
(Equation 1) formalizes a trade-off between the distance to optimality of the inference, and the cogni-
tive constraints under which it is carried out. We stress that our proposal is not that the brain actively 
solves this optimization problem online, but instead that it is endowed with an inference algorithm 
(whose origin remains to be elucidated) which is effectively a solution to the constrained optimization 
problem.

By grounding the sequential effects in the optimal solution to a problem of constrained optimi-
zation, our approach opens avenues for exploring the origins of sequential effects, in the form of 
hypotheses about the nature of the constraint that hinders the inference carried out by the brain. With 
the precision cost, more precise posterior distributions are assumed to take a larger cognitive toll. The 
intuitive assumption that it is costly to be precise finds a more concrete realization in neural models 
of inference with probabilistic population codes: in these models, the precision of the posterior is 
proportional to the average activity of the population of neurons and to the number of neurons (Ma 
et al., 2006; Seung and Sompolinsky, 1993). More neural activity and more neurons arguably come 
with a metabolic cost, and thus more precise posteriors are more costly in these models. Imprecisions 
in computations, moreover, was shown to successfully account for decision variability and adaptive 
behavior in volatile environments (Findling et al., 2019; Findling et al., 2021).

The unpredictability cost, which we introduce, yields models that also exhibit sequential effects (for 
Markov observers), and that fit several subjects better than the precision-cost models. The unpredict-
ability cost relies on a different hypothesis: that the cost of representing a distribution over different 
possible states of the world (here, different possible values of ‍q‍) resides in the difficulty of representing 
these states. This could be the case, for instance, under the hypothesis that the brain runs stochastic 
simulations of the implied environments, as proposed in models of ‘intuitive physics’ (Battaglia et al., 
2013) and in Kahneman and Tversky’s ‘simulation heuristics’ (Kahneman et al., 1982). More entropic 
environments imply more possible scenarios to simulate, giving rise, under this assumption, to higher 
costs. A different literature explores the hypothesis that the brain carries out a mental compression 
of sequences (Simon, 1972; Chekaf et al., 2016; Planton et al., 2021); entropy in this context is a 
measure of the degree of compressibility of a sequence (Planton et al., 2021), and thus, presumably, 
of its implied cost. As a result, the brain may prefer predictable environments over unpredictable 
ones. Human subjects exhibit a preference for predictive information indeed (Ogawa and Watanabe, 
2011; Trapp et al., 2015), while unpredictable stimuli have been shown not only to increase anxiety-
like behavior (Herry et al., 2007), but also to induce more neural activity (Herry et al., 2007; den 
Ouden et al., 2009; Alink et al., 2010) — a presumably costly increase, which may result from the 
encoding of larger prediction errors (Herry et al., 2007; Schultz and Dickinson, 2000).

We note that both costs (precision and unpredictability) can predict sequential effects, even though 
neither carries ex ante an explicit assumption that presupposes the existence of sequential effects. 
They both reproduce the attractive recency effect of the last stimulus exhibited by the subjects. They 
make quantitatively different predictions (Figure 4); we also find this diversity of behaviors in subjects.

The precision cost, as mentioned above, yields leaky-integration models which can be summarized 
by a simple algorithm in which the observed patterns are counted with an exponential decay. The 
psychology and neuroscience literature proposes many similar ‘leaky integrators’ or ‘leaky accumu-
lators’ models (Smith, 1995; Roe et al., 2001; Usher and McClelland, 2001; Cook and Maunsell, 
2002; Wang, 2002; Sugrue et al., 2004; Bogacz et al., 2006; Kiani et al., 2008; Yu and Cohen, 
2008; Gao et al., 2011; Tsetsos et al., 2012; Ossmy et al., 2013; Meyniel et al., 2016). In connec-
tionist models of decision-making, for instance, decision units in abstract network models have activity 
levels that accumulate evidence received from input units, and which decay to zero in the absence 
of input (Roe et al., 2001; Usher and McClelland, 2001; Wang, 2002; Bogacz et al., 2006; Tsetsos 
et al., 2012). In other instances, perceptual evidence (Kiani et al., 2008; Gao et al., 2011; Ossmy 
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et al., 2013) or counts of events (Sugrue et al., 2004; Yu and Cohen, 2008; Meyniel et al., 2016) 
are accumulated through an exponential temporal filter. In our approach, leaky integration is not an 
assumption about the mechanisms underpinning some cognitive process: instead, we find that it is an 
optimal strategy in the face of a cognitive cost weighing on the precision of beliefs. Although it is less 
clear whether the unpredictability-cost models lend themselves to a similar algorithmic simplification, 
they consist in a distortion of Bayesian inference, for which various neural-network models have been 
proposed (Deneve et al., 2001; Ma et al., 2008; Ganguli and Simoncelli, 2014; Echeveste et al., 
2020).

Turning to the experimental results, we note that in spite of the rich literature on sequential 
effects, the majority of studies have focused on equiprobable Bernoulli environments, in which the 
two possible stimuli both had a probability equal to 0.5, as in tosses of a fair coin (Soetens et al., 
1985; Cho et al., 2002; Yu and Cohen, 2008; Wilder et al., 2009; Jones et al., 2013; Zhang et al., 
2014; Ayton and Fischer, 2004; Gökaydin and Ejova, 2017). In environments of this kind, the two 
stimuli play symmetric roles and all sequences of a given length are equally probable. In contrast, in 
biased environments one of the two possible stimuli is more probable than the other. Although much 
less studied, this situation breaks the regularities of equiprobable environments and is arguably very 
frequent in real life. In our experiment, we explore stimulus generative probabilities from 0.05 to 
0.95, thus allowing to investigate the behavior of subjects in a wide spectrum of Bernoulli environ-
ments: from these with ‘extreme’ probabilities (e.g. p = 0.95) to these only slightly different from the 
equiprobable case (e.g. p = 0.55) to the equiprobable case itself (p = 0.5). The subjects are sensitive 
to the imbalance of the non-equiprobable cases: while they predict A in half the trials of the equiprob-
able case, a probability of just p = 0.55 suffices to prompt the subjects to predict A in about in 60% 
of trials, a significant difference (‍̄p(A) = 0.602‍; sem: 0.008; p-value of t-test against null hypothesis that 

‍̄p(A) = 0.5‍: 1.7e-11; subjects pooled).
The well-known ‘probability matching’ hypothesis (Herrnstein, 1961; Vulkan, 2000; Gaissmaier 

and Schooler, 2008) suggests that the proportion of predictions A matches the stimulus genera-
tive probability: ‍̄p(A) = p‍. This hypothesis is not supported by our data. We find that in the non-
equiprobable conditions these two quantities are significantly different (all p-values <1e-11, when 

‍p ̸= 0.5‍). More precisely, we find that the proportion of prediction A is more extreme than the stimulus 
generative probability (i.e. ‍̄p(A) > p‍ when ‍p > 0.5‍, and ‍̄p(A) < p‍ when ‍p < 0.5‍; Figure 2a). This result is 
consistent with the observations made by Edwards, 1961; Edwards, 1956 and with the conclusions 
of a more recent review (Vulkan, 2000).

In addition to varying with the stimulus generative probability, the subjects’ predictions depend 
on the recent history of stimuli. Recency effects are common in the psychology literature; they were 
reported from memory (Ebbinghaus et  al., 1913) to causal learning (Collins and Shanks, 2002) 
to inference (Shanteau, 1972; Hogarth and Einhorn, 1992; Benjamin, 2019). Recency effects, in 
many studies, are obtained in the context of reaction tasks, in which subjects must identify a stimulus 
and quickly provide a response (Hyman, 1953; Bertelson, 1965; Kornblum, 1967; Soetens et al., 
1985; Cho et al., 2002; Yu and Cohen, 2008; Wilder et al., 2009; Jones et al., 2013; Zhang et al., 
2014). Although our task is of a different kind (subjects must predict the next stimulus), we find some 
evidence of recency effects in the response times of subjects: after observing the less frequent of the 
two stimuli (when ‍p ̸= 0‍), subjects seem slower at providing a response (see Appendix). In prediction 
tasks (like ours), both attractive recency effects, also called ‘hot-hand fallacy’, and repulsive recency 
effects, also called ‘gambler’s fallacy’, have been reported (Jarvik, 1951; Edwards, 1961; Ayton and 
Fischer, 2004; Burns and Corpus, 2004; Croson and Sundali, 2005; Oskarsson et al., 2009). The 
observation of both effects within the same experiment has been reported in a visual identification 
task (Chopin and Mamassian, 2012) and in risky choices (‘wavy recency effect’ Plonsky et al., 2015; 
Plonsky and Erev, 2017). As to the heterogeneity of these results, several explanations have been 
proposed; two important factors seem to be the perceived degree of randomness of the predicted 
variable and whether it relates to human performance (Ayton and Fischer, 2004; Burns and Corpus, 
2004; Croson and Sundali, 2005; Oskarsson et al., 2009). In any event, most studies focus exclu-
sively on the influence of ‘runs’ of identical outcomes on the upcoming prediction, for example, in 
our task, on whether three As in a row increases the proportion of predictions A. With this analysis, 
Edwards (Edwards, 1961) in a task similar to ours concluded to an attractive recency effect (which he 
called ‘probability following’). Although our results are consistent with this observation (in our data 
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three As in a row do increase the proportion of predictions A), we provide a more detailed picture 
of the influence of each stimulus preceding the prediction, whether it is in a ‘run’ of identical stimuli 
or not, which allows us to exhibit the non-trivial finer structure of the recency effects that is often 
overlooked.

Up to two stimuli in the past, the recency effect is attractive: observing A at trial ‍t − 2‍ or at trial 

‍t − 1‍ induces, all else being equal, a higher proportion of predictions A at trial ‍t‍ (in comparison to 
observing B; Figures 2 and 6a). The influence of the third-to-last stimulus is more intricate: it can 
yield either an attractive or a repulsive effect, depending on the second-to-last and the last stimuli. 
For a majority of probability parameters, ‍p‍, while an A followed by the sequence AA has an attrac-
tive effect (i.e. ‍p(A|AAA) > p(A|BAA)‍), an A followed by the sequence BA has a repulsive effect (i.e. 

‍p(A|ABA) < p(A|BBA)‍; Figure 6b and c). How can this reversal be intuited? Only one of our models, 
the precision-cost model with a Markov order 1 (‍m = 1‍), reproduces this behavior; we show how it 
provides an interpretation for this result. From the update equation of this model (Equation 4), it is 
straightforward to show that the posterior of the model subject (a Dirichlet distribution of order 4) is 
determined by four quantities, which are exponentially-decaying counts of the four two-long patterns 
observed in the sequence of stimuli: BB, BA, AB, and AA. The higher the count of a pattern, the 
more likely the model subject deems this pattern to happen again. In the equiprobable case (‍p = 0.5‍), 
after observing the sequence AAA, the count of AA is higher than after observing BAA, thus the 
model subject believes that AA is more probable, and accordingly predicts A more frequently, i.e., 

‍p(A|AAA) > p(A|BAA)‍. As for the sequences ABA and BBA, both result in the same count of AA, but the 
former results in a higher count of AB — in other words, the short sequence ABA suggests that A is 
usually followed by B, but the sequence BBA does not — and thus the model subject predicts more 
frequently B, i.e., less frequently A (‍p(A|ABA) < p(A|BBA)‍).

In short, the ability of the precision-cost model of a Markov observer to capture the repulsive effect 
found in behavioral data suggests that human subjects extrapolate the local statistical properties of 
the presented sequence of stimuli in order to make predictions, and that they pay attention not only 
to the ‘base rate’ — the marginal probability of observing A, unconditional on the recent history — as 
a Bernoulli observer would do, but also to the statistics of more complex patterns, including the repe-
titions and the alternations, thus capturing the transition probabilities between consecutive observa-
tions. Wilder et al., 2009, Jones et al., 2013, and Meyniel et al., 2016 similarly argue that sequential 
effects result from an imperfect inference of the base rate and of the frequency of repetitions and 
alternations. Dehaene et al., 2015 argue that the knowledge of transition probabilities is a central 
mechanism in the brain’s processing of sequences (e.g. in language comprehension), and infants as 
young as 5 months were shown to be able to track both base rates and transition probabilities (see 
Saffran and Kirkham, 2018 for a review). Learning of transition probabilities has also been observed 
in rhesus monkeys (Meyer and Olson, 2011).

The deviations from perfect inference, in the precision-cost model, originate in the constraints 
faced by the brain when performing computation with probability distributions. In spite of the success 
of the Bayesian framework, we note that human performance in various inference tasks is often subop-
timal (Nassar et al., 2010; Hu et al., 2013; Acerbi et al., 2014; Prat-Carrabin et al., 2021b; Prat-
Carrabin and Woodford, 2022). Our approach suggests that the deviations from optimality in these 
tasks may be explained by the cognitive constraints at play in the inference carried out by humans.

Other studies have considered the hypothesis that suboptimal behavior in inference tasks results 
from cognitive constraints. Kominers et  al., 2016 consider a model in which Bayesian inference 
comes with a fixed cost; the observer can choose to forgo updating her belief, so as to avoid the cost. 
In some cases, the model predicts ‘permanently cycling beliefs’ that do not converge; but in general 
the model predicts that subjects will choose not to react to new evidence that is unsurprising under 
the current belief. The significant sequential effects we find in our subjects’ responses, however, seem 
to indicate that they are sensitive to both unsurprising (e.g. outcome A when p>0.5) and surprising 
(outcome B when p>0.5) observations, at least across the values of the stimulus generative proba-
bility that we test (Figure 2). Graeber, 2020 considers costly information processing as an account 
of subjects’ neglect of confounding variables in an inference task, but concludes instead that the 
suboptimal behavior of subjects results from their misunderstanding of the information structure in 
the task. A model close to ours is the one proposed in Azeredo da Silveira and Woodford, 2019 
and Azeredo da Silveira et al., 2020, in which an information-theoretic cost limits the memory of an 
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otherwise optimal and Bayesian decision-maker, resulting, here also, in beliefs that fluctuate and do 
not converge, and in an overweighting, in decisions, of the recent evidence.

Taking a different approach, Dasgupta et al., 2020 implement a neural network that learns to 
approximate Bayesian posteriors. Possible approximate posteriors are constrained not only by the 
structure of the network, but also by the fact that the same network is used to address a series of 
different inference problems. Thus the network’s parameters must be ‘shared’ across problems, which 
is meant to capture the brain’s limited computational resources. Although this constraint differs from 
the ones we consider, we note that in this study the distance function (which the approximation aims 
to minimize) is the same as in our models, namely, the Kullback-Leibler divergence from the optimal 
posterior to the approximate posterior, ‍DKL(P̂||P)‍. Minimizing this divergence (under a cost) allows 
the model subject to obtain a posterior as close as possible (at least by this measure) to the optimal 
posterior given the most recent stimulus and the subject’s belief prior to observing the stimulus, which 
in turn enables the subject to perform reasonably well in the task.

In principle, rewarding subjects with a higher payoff when they make a correct prediction would 
change the optimal trade-off (between the distance to the optimal posterior and the cognitive costs) 
formalized in Equation 1, resulting in ‘better’ posteriors (closer to the Bayesian posterior), and thus 
to higher performance in the task. At the same time, incentivization is known to influence, also in the 
direction of higher performance, the extent to which choice behavior is close to probability matching 
(Vulkan, 2000). The interesting question of the respective sensitivities of the subjects’ inference 
process and of their response-selection strategy in response to different levels of incentives is beyond 
the scope of this study, in which we have focussed on the sensitivity of behavior to different stimulus 
generative probabilities.

In any case, the approach of minimizing the Kullback-Leibler divergence from the optimal poste-
rior to the approximate posterior is widely used in the machine learning literature, and forms the 
basis of the ‘variational’ family of approximate-inference techniques (Bishop, 2006). These techniques 
have inspired various cognitive models (Sanborn, 2017; Gallistel and Latham, 2022; Aridor and 
Woodford, 2023); alternatively, a bound on the divergence, known as the ‘evidence bound’, or, in 
neuroscience, as the negative of the ‘free energy’, is maximized (Moustafa, 2017; Friston et  al., 
2006; Friston, 2009). (We note that the ‘opposite’ divergence, ‍DKL(P||P̂)‍, is minimized in a different 
machine-learning technique, ‘expectation propagation’ (Bishop, 2006), and in the cognitive model 
of causal reasoning of Icard and Goodman, 2015.) In these techniques, the approximate posterior 
is chosen within a convenient family of tractable, parameterized distributions; other distributions are 
precluded. This can be understood, in our framework, as positing a cost ‍C(P̂)‍ that is infinite for most 
distributions, but zero for the distributions that belong to some arbitrary family (Prat-Carrabin et al., 
2021a). The precision cost and the unpredictability cost, in comparison, are ‘smooth’, and allow for 
any distribution, but they penalize, respectively, more precise belief distributions, and belief distribu-
tions that imply more unpredictable environments. Our study shows that inference, when subject to 
either of these costs, yields an attractive sequential effect of the most recent observation; and with 
a precision cost weighing on the inference of transition probabilities (i.e., ‍m = 1‍), the model predicts 
the subtle pattern of attractive and repulsive sequential effects that we find in subjects’ responses.

Methods
Task and subjects
The computer-based task was programmed using the Python library PsychoPy (Peirce, 2008). The 
experiment comprised ten blocks of trials, which differed by the stimulus generative probability, p, 
used in all the trials of each block. The probability p was chosen randomly among the ten values 
ranging from 0.50 to 0.95 by increments of 0.05, excluding the values already chosen; and with prob-
ability 1/2 the stimulus generative probability ‍1 − p‍ was used instead. Each block started with 200 
passive trials, in which the subject was only asked to look at the 200 stimuli sampled with the block’s 
probability and successively presented. No action from the subject was required for these passive 
trials. The subject was then asked to predict, in each of 200 trials, the next location of the stimulus. 
Subjects provided their responses by a keypress. The task was presented as a game to the subjects: 
the stimulus was a lightning symbol, and predicting correctly whether the lightning would strike the 
left or the right rod resulted in the electrical energy of the lightning being collected in a battery 
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(Figure 1). A gauge below the battery indicated the amount of energy accumulated in the current 
block of trials (Figure  1a). Twenty subjects (7  women, 13  men; age: 18–41, mean 25.5, standard 
deviation 6.2) participated in the experiment. All subjects completed the ten blocks of trials, except 
one subject who did not finish the experiment and was excluded from the analysis. The study was 
approved by the ethics committee Île de France VII (CPP 08–021). Participants gave their written 
consent prior to participating. The number of blocks of trials and the number of trials per block were 
chosen as a trade-off between maximizing the statistical power of the study, scanning the values of 
the generative probability parameter from 0.05 to 0.95 with a satisfying resolution, and maintaining 
the duration of the experiment under a reasonable length of time. The number of subjects was chosen 
consistently with similar studies and so as to capture individual variability. Throughout the study, we 
conduct Student’s t-tests when comparing the subjects’ proportion of predictions A to a given value 
(e.g. 0.5). When comparing two proportions of predictions A obtained under different conditions (e.g. 
depending on whether the preceding stimulus is A or B), we accordingly conduct Fisher exact tests. 
The trials in which subjects failed to respond within the limit of 1 s were not included in the analysis. 
They represented 1.27% of the trials, on average (across subjects); and for 95% of the subjects these 
trials represented less than 2.5% of the trials.

Sequential effects of the models
We run simulations of the eight models and look at the predictions they yield. To reproduce the condi-
tions faced by the subjects, which included 200 passive trials, we start each simulation by showing 
to the model subject 200 randomly sampled stimuli (without collecting predictions at this stage). We 
then show an additional 200  samples, and obtain a prediction from the model subject after each 
sample. The sequential effects of the most recent stimulus, with the different models, are shown 
in Figure 7. With the precision-cost models, the posterior distribution of the model subject does 
not converge, but fluctuates instead with the recent history of the stimulus. This results in attractive 
sequential effects (Figure  7a), including for the Bernoulli observer, who assumes that the proba-
bility of A does not depend on the most recent stimulus. With the unpredictability-cost models, the 
posterior of the model subject does converge. With Markov observers, it converges toward a param-
eter vector ‍q‍ that implies that the probability of observing A depends on the most recent stimulus, 
resulting in the presence of sequential effects of the most recent stimulus (Figure 7b, second to fourth 
row). With a Bernoulli observer, the posterior of the model subject converges toward a value of the 
stimulus generative probability that does not depend on the stimulus history. As more evidence is 
accumulated, the posterior narrows around this value but not without some fluctuations that depend 
on the sequence of stimuli presented. In consequence the model subject’s estimate of the stimulus 
generative probability is also subject to fluctuations, and depends on the history of stimuli (including 
the most recent stimulus), although the width of the fluctuations tend to zero as more stimuli are 
observed. After the 200 stimuli of the passive trials, the sequential effects of the most recent stimulus 
resulting from this transient regime appear small in comparison to the sequential effects obtained with 
the other models (Figure 7b, first row). The Figure 7 also shows the behaviors of the models when 
augmented with a propensity to repeat the preceding response: we comment on these in the section 
dedicated to these models, below.

Turning to higher-order sequential effects, we look at the influence on predictions of the second- 
and third-to-last stimulus (Figure 8). As mentioned, only precision-cost models of Markov observers 
yield repulsive sequential effects, and these occur only when the third-to-last-stimulus is followed by 
BA. They do not occur with the second-to-last stimulus, nor with the third-to-last-stimulus when it is 
followed by AA (Figure 8a); and they do not occur in any case with the unpredictability-cost models 
(Figure 8b).

Derivation of the approximate posteriors
We derive the solution to the constrained optimization problem, in the general case of a ‘hybrid’ 
model subject who bears both a precision cost, with weight ‍λp‍, and an unpredictability cost, with 
weight ‍λu‍. Thus the subject minimizes the loss function
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	﻿‍

L(P̂t+1) =
ˆ

P̂t+1(q) ln P̂t+1(q)
Pt+1(q)

dq

+λu
´

H(X; q)P̂t+1(q)dq

+λp
´

P̂t+1(q) ln P̂t+1(q)dq
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(9)

in which we have included a Lagrange multiplier, μ, corresponding to the normalization constraint, 

‍

ˆ
P̂t+1(q)dq = 1

‍
. Taking the functional derivative of ‍L‍ and setting to zero, we obtain

 

a b

Figure 7. Sequential effects of the most recent stimulus in precision-cost and unpredictability-cost models. (a) Precision-cost models. 
(b) Unpredictability-cost models. First row: Bernoulli observers (m = 0). Second to fourth rows: Markov observers (m = 1, 2, and 3). First column 
(each panel): proportion of predictions A in the models’ responses as a function of the stimulus generative probability, conditional on the preceding 
observation being A (blue line) or B (orange line), and unconditional (grey line); with repetition propensity (‍η = 0.2‍, dotted lines), and without (solid 
lines). Second column (each panel): difference between the proportion of predictions A conditional on the preceding observation being A, and the 
same proportion conditional on a B; with repetition propensity (dotted lines), and without (solid lines). A positive difference indicates an attractive 
sequential effect of the most recent stimulus.
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	﻿‍ ln P̂t+1(q) + 1 − ln Pt+1(q) + λuH(X; q) + λp ln P̂t+1(q) + λp + µ = 0,‍� (10)

and thus we write the approximate posterior as

	﻿‍
P̂t+1(q) ∝ Pt+1(q)

1
1 + λp exp

(
− λu

1 + λp
H(X; q)

)
,
‍�

(11)

where ‍Pt+1(q)‍ is the Bayesian update of the preceding belief, ‍̂Pt(q)‍, i.e.,

	﻿‍ Pt+1(q) ∝ P̂t(q)p(xt+1|q, xt−m+1:t).‍� (12)

a b

Figure 8. Sequential effects of the second- and third-to-last stimuli in precision-cost and unpredictability-cost models. (a) Precision-cost models. 
(b) Unpredictability-cost models. First row: Bernoulli observers (m = 0). Second to fourth rows: Markov observers (m = 1, 2, and 3). First column (each 
panel): difference between the proportion of predictions A in the model subject’s responses, conditional on the two preceding observations being the 
sequence AA, and the same proportion conditional on the sequence BA. A positive difference indicates an attractive sequential effect of the second-
to-last stimulus. Second column (each panel): difference between the proportion of predictions A in the model subject’s responses, conditional on 
the three preceding observations being the sequence AAA, and the same proportion conditional on the sequence BAA. Third column (each panel): 
difference between the proportion of predictions A in the model subject’s responses, conditional on the three preceding observations being the 
sequence ABA, and the same proportion conditional on the sequence BBA. The precision-cost models of Markov observers are the only models that 
yield a negative difference, i.e., a repulsive sequential effect of the third-to-last stimulus, in this case.
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Setting the weight of the unpredictability cost to zero (i.e., ‍λu = 0‍), we obtain the posterior in pres-
ence of the precision cost only, as

	﻿‍ P̂prec
t+1 (q) ∝ Pt+1(q)

1
1 + λp .‍�

(13)

The main text provides more details about the posterior in this case (Equation 4), in particular with 
a Bernoulli observer (‍m = 0‍; Equation 5, Equation 6).

For the hybrid model (in which both ‍λu‍ and ‍λp‍ are potentially different from zero), we obtain

	﻿‍
P̂t(q) ∝ P̂prec

t (q) exp

(
−λuH(X; q)

t∑
i=1

(
1

1 + λp

)i
)

.
‍�

(14)

With ‍λp = 0‍, the sum in the exponential is equal to ‍t‍, and the precision-cost posterior, ‍̂P
prec
t (q)‍, is 

the Bayesian posterior, ‍P
∗
t (q)‍, and thus we obtain the posterior in presence of the unpredictability cost 

only (see Equation 8).

Hybrid models
The hybrid model, described above, features both a precision cost and an unpredictability cost, with 
respective weights ‍λp‍ and ‍λu‍. As with the models that include only one type of cost, we consider a 
Bernoulli observer (‍m = 0‍), and three Markov observers (‍m = 1, 2,‍ and 3). As for the response-selection 
strategy, we use, here also, the generalized probability-matching strategy parameterized by ‍κ‍. We 
thus obtain four new models; each one has three parameters (‍λp‍, ‍λu‍, and ‍κ‍), while the non-hybrid 
models (featuring only one type of cost) have only two parameters.

We fit these models to the responses of subjects. For 68% of subjects, the BIC of the best-fitting 
hybrid model is larger than the BIC of the best-fitting non-hybrid model, indicating a worse fit, by 
this measure. This suggests that for these subjects, allowing for a second type of cost result in a 
modest improvement of the fit that does not justify the additional parameter. For the remaining 32% 
of subjects, the hybrid models yield a better fit (a lower BIC) than the non-hybrid models, although for 
half of these, the difference in BICs is lower than 6, which is only weak evidence in favor of the hybrid 
models.

Moreover, we compute the exceedance probability, defined below in the section ‘Bayesian Model 
Selection’, of the hybrid models (together with the complementary probability of the non-hybrid 
models). We find that the exceedance probability of the hybrid models is 8.1% while that of the non-
hybrid models is 91.9%, suggesting that subjects best-fitted by non-hybrid models are more prevalent.

In summary, we find that for more than two thirds of subjects, allowing for a second cost type does 
not improve much the fit to the behavioral data (the BIC is higher with the best-fitting hybrid model). 
These subjects are best-fitted by non-hybrid models, that is, by models featuring only one type of 
cost, instead of ‘falling in between’ the two cost types. This suggests that for most subjects, only 
one of the two costs, either the prediction cost or the unpredictability cost, dominates the inference 
process.

Alternative response-selection strategy, and repetition or alternation 
propensity
In addition to the generalized probability-matching response-selection strategy presented in the 
main text, in our investigations we also implement several other response-selection strategies. 
First, a strategy based on a ‘softmax’ function that smoothes the optimal decision rule; it does not 
yield, however, a behavior substantially different from that of the generalized probability-matching 
response-selection strategy. Second, we examine a strategy in which the model subject chooses the 
optimal response with a probability that is fixed across conditions, which we fit onto subjects’ choices. 
No subject is best-fitted by this strategy. Third, another possible strategy proposed in the game-
theory literature (Nowak and Sigmund, 1993) is ‘win-stay, lose-shift’: it prescribes to repeat the same 
response as long as it proves correct and to change otherwise. In the context of our binary-choice 
prediction task, it is indistinguishable from a strategy in which the model subject chooses a predic-
tion equal to the outcome that last occurred. This strategy is a special case of our Bernoulli observer 
hampered by a precision cost whose weight ‍λ‍ is large combined with the optimal response-selection 
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strategy (‍κ → ∞‍). Since the generalized probability-matching strategy parameterized by the expo-
nent ‍κ‍ appears either more general, better than or indistinguishable from those other response-
selection strategies, we selected it to obtain the results presented in the main text.

Furthermore, we consider the possibility that subjects may have a tendency to repeat their 
preceding response, or, conversely, to alternate and choose the other response, independently from 
their inference of the stimulus statistics. Specifically, we examine a generalization of the response-
selection strategy, in which a parameter ‍η‍, with ‍−1 < η < 1‍, modulates the probability of a repe-
tition or of an alternation. With probability ‍1 − |η|‍, the model subject chooses a response with the 
generalized probability-matching response-selection strategy, with parameter ‍κ‍. With probability ‍|η|‍, 
the model subject repeats the preceding response, if ‍η‍ is positive; or chooses the opposite of the 
preceding response, if ‍η‍ is negative. With ‍η = 0‍, there is no propensity for repetition nor alternation, 
and the response-selection strategy is the same as the one we have considered in the main text. We 
have allowed for alternations (‍η < 0‍) in this model for the sake of generality, but for all the subjects the 
best-fitting value of ‍η‍ is non-negative, thus henceforth we only consider the possibility of repetitions, 
i.e., non-negative values of the parameter (‍η ≥ 0‍).

We note that with a repetition probability ‍η‍, such that ‍0 ≤ η < 1‍, the unconditional probability of a 
prediction A, which we denote by ‍̄pη(A)‍, is not different from the unconditional probability of a predic-
tion A in the absence of a repetition probability ‍η‍, ‍̄p(A)‍, as in the event of a repetition, the response 
that is repeated is itself A with probability ‍̄p(A)‍; formally, ‍̄pη(A) = (1 − η)p̄(A) + ηp̄η(A)‍, which implies 
the equality ‍̄pη(A) = p̄(A)‍.

Now turning to sequential effects, we note that with a repetition probability ‍η‍, the probability of a 
prediction ‍A‍ conditional on an observation A is

	﻿‍ p̄η(A|A) = (1 − η)p̄(A|A) + ηp̄(A).‍� (15)

In other words, when introducing the repetition probability ‍η‍, the resulting probability of a predic-
tion A conditional on observing A is a weighted mean of the unconditional probability of a predic-
tion A and of the conditional probability of a prediction A in the absence of a repetition probability. 
Figure 7 (dotted lines) illustrates this for the eight models, with ‍η = 0.2‍. Consequently the sequential 
effects with this response-selection strategy are more modest (Figure 7, light-red dots).

We fit (by maximizing their likelihoods) our eight models now equipped with a propensity for 
repetition (or alternation) parameterized by ‍η‍. The average best-fitting value of ‍η‍, across subjects, is 
0.21 (standard deviation: 0.19; median: 0.18); as mentioned, no subjects have a negative best-fitting 
value of ‍η‍. In order to assess the degree to which the models with repetition propensity are able to 
capture subjects’ data, in comparison with the models without such propensity, we use the Bayesian 
Information Criterion (BIC) (Schwarz, 1978), which penalizes the number of parameters, as a compar-
ative metric (a lower BIC is better). For 26% of subjects, the BIC with this response-selection strategy 
(allowing for ‍η ̸= 0‍) is higher than with the original response-selection strategy (which sets ‍η = 0‍,) 
suggesting that the responses of these subjects do not warrant the introduction of a repetition (or 
alternation) propensity. In addition, for these subjects the best-fitting inference model, characterized 
by a cost type and a Markov order, is the same when the response-selection strategy allows for repe-
tition or alternation (‍η ̸= 0‍) and when it does not (‍η = 0‍). For 47% of subjects, the BIC is lower when 
including the parameter ‍η‍ (suggesting that allowing for ‍η ̸= 0‍ results in a better fit to the data), and 
importantly, here also the best-fitting inference model (cost type and Markov order) is the same with 

‍η ̸= 0‍ and with ‍η = 0‍. For 11% of subjects, a better fit (lower BIC) is obtained with ‍η ̸= 0‍; and the best-
fitting inference models, with ‍η ̸= 0‍ and with ‍η = 0‍, belong to the same family of models, that is, they 
have the same cost type (precision cost or unpredictability cost), and only their Markov orders differ. 
Finally, only for the remaining 16% does the cost type change when allowing for ‍η ̸= 0‍. In other words, 
for 84% of subjects the best-fitting cost type is the same whether or not ‍η‍ is allowed to differ from 0.

Furthermore, the best-fitting parameters ‍λ‍ and ‍κ‍ are also stable across these two cases. Among 
the 73% of subjects whose best-fitting inference model (including both cost type and Markov order) 
remains the same regardless of the presence of a repetition propensity, we find that the best-fitting 
values of ‍κ‍, with ‍η ̸= 0‍ and with ‍η = 0‍, differ by less than 10% for 93% of subjects, and the best-fitting 
values of ‍λ‍ differ by less than 10% for 71% of subjects. For these two parameters, the correlation 
coefficient (between the best-fitting value with ‍η = 0‍ and the best-fitting value with ‍η ̸= 0‍) is above 
0.99 (with p-values lower than 1e-19).
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The responses of a majority of subjects are thus better reproduced by a response-selection strategy 
that includes a probability of repeating the preceding response. The impact of this repetition propen-
sity on sequential effects is relatively small in comparison to the magnitude of these effects (Figure 7). 
For most subjects, moreover, the best-fitting inference model, characterized by its cost type and its 
Markov order, is the same — with or without repetition propensity —, and the best-fitting parameters 
‍λ‍ and ‍κ‍ are very close in the two cases. Therefore, this analysis supports the results of the model-
fitting and model-selection procedure, and validates its robustness. We conclude that the models of 
costly inference are essential in reproducing the behavioral data, notwithstanding a positive repetition 
propensity in a fraction of subjects.

Computation of the models’ likelihoods
Model fitting is conducted by maximizing for each model the likelihood of the subject’s choices. With 
the precision-cost models, the likelihood can be derived analytically and thus easily computed: the 
model’s posterior is a Dirichlet distribution of order ‍2m+1‍, whose parameters are exponentially filtered 
counts of the observed sequences of length ‍m + 1‍. With a Bernoulli observer, i.e., ‍m = 0‍, this is the 
Beta distribution presented in Equation 5. The expected probability of a stimulus A, conditional 
on the sequence of ‍m‍ stimuli most recently observed, is a simple ratio involving the exponentially 
filtered counts, for example ‍(ñ

A
t + 1)/(ñA

t + ñB
t + 2)‍ in the case of a Bernoulli observer. This probability 

is then raised to the power ‍κ‍ and normalized (as prescribed by the generalized probability-matching 
response-selection strategy) in order to obtain the probability of a prediction A.

As for the unpredictability-cost models, the posterior is given in Equation 8 up to a normalization 
constant. Unfortunately, the expected probability of a stimulus A implied by this posterior does not 
come in a closed-form expression. Thus we compute the (unnormalized) posterior on a discretized grid 
of values of the vector ‍q‍. The dimension of the vector ‍q‍ is ‍2m‍, and each element of ‍q‍ is in the segment 

‍[0, 1]‍. If we discretize each dimension into ‍n‍ bins, we obtain ‍n2m
‍ different possible values of the vector 

‍q‍; for each of these, at each trial, we compute the unnormalized value of the posterior (as given by 
Equation 8). As ‍m‍ increases, this becomes computationally prohibitive: for instance, with ‍n = 100‍ bins 
and ‍m = 3‍, the multidimensional grid of values of ‍q‍ contains  1016 numbers (with a typical computer, 
this would represent 80,000 terabytes). In order to keep the needed computational resources within 
reasonable limits, we choose a lower resolution of the grid for larger values of ‍m‍. Specifically, for ‍m = 0‍ 
we choose a grid (over ‍[0, 1]‍) with increments of 0.01; for ‍m = 1‍, increments of 0.02 (in each dimen-
sion); for ‍m = 2‍, increments of 0.05; and for ‍m = 3‍, increments of 0.1. We then compute the mean of 
the discretized posterior and pass it through the generalized probability-matching response-selection 
model to obtain the choice probability.

To find the best-fitting parameters ‍λ‍ and ‍κ‍, the likelihood was maximized with the L-BFGS-B algo-
rithm (Byrd et  al., 1995; Zhu et  al., 1997). These computations were run using Python and the 
libraries Numpy and Scipy (Harris et al., 2020; Virtanen et al., 2020).

Symmetries and relations between conditional probabilities
Throughout the paper, we leverage the symmetry inherent to the Bernoulli prediction task to present 
results in a condensed manner. Specifically, in our analysis, the proportion of predictions A when the 
probability of A (the stimulus generative probability) is ‍p‍, which we denote here by ‍̄p(A|p)‍, is equal 
to the proportion of predictions B when the probability of A is ‍1 − p‍, which we denote by ‍̄p(B|1 − p)‍; 
i.e., ‍̄p(A|p) = p̄(B|1 − p)‍. More generally, the predictions conditional on a given sequence when the 
probability of A is ‍p‍ are equal to the predictions conditional on the ‘mirror’ sequence (in which A 
and B have been swapped), when the probability of A is ‍1 − p‍, for example extending our notation, 

‍̄p(A|AAB, p) = p̄(B|BBA, 1 − p)‍. Here, we show how this results in the symmetries in Figure 2, and in the 
fact that in Figures 5 and 6, it suffices to plot the sequential effects obtained with only a fraction of 
all the possible sequences of two or three stimuli.

First, we note that

	﻿‍

p̄(A|p) = 1 − p̄(B|p)

= 1 − p̄(A|1 − p),‍�
(16)

which implies the symmetry of ‍̄p(A)‍ in Figure 2a (grey line). Turning to conditional probabilities (and 
thus sequential effects), we have

https://doi.org/10.7554/eLife.81256
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	﻿‍

p̄(A|A, p) = 1 − p̄(B|A, p)

= 1 − p̄(A|B, 1 − p)

and p̄(A|B, p) = 1 − p̄(A|A, 1 − p).‍�

(17)

As a result, the lines representing ‍̄p(A|A)‍ (blue) and ‍̄p(A|B)‍ (orange) in Figure 2a are reflections of 
each other. In addition, these equations result in the equality

	﻿‍ p̄(A|A, p) − p̄(A|B, p) = p̄(A|A, 1 − p) − p̄(A|B, 1 − p),‍� (18)

which implies the symmetry in Figure 2b.
As for the sequential effect of the second-to-last stimulus, we show in Figures 5a and 6a the differ-

ence in the proportions of predictions A conditional on two past sequences of two stimuli, AA and BA; 
i.e., ‍̄p(A|AA) − p̄(A|BA)‍. There are two other possible sequences of two stimuli: ‍AB‍ and ‍BB‍. The differ-
ence in the proportions conditional on these two sequences is implied by the former difference, as:

	﻿‍

p̄(A|AB, p) − p̄(A|BB, p) = 1 − p̄(B|AB, p) − (1 − p̄(B|BB, p))

= 1 − p̄(A|BA, 1 − p) − (1 − p̄(A|AA, 1 − p))

= p̄(A|AA, 1 − p) − p̄(A|BA, 1 − p)

.

‍�

(19)

As for the sequential effect of the third-to-last stimulus, we show in Figures 5b and 6b the differ-
ence in the proportions conditional on the sequences AAA and BAA, and in Figures 5c and 6c the 
difference in the proportions conditional on the sequences ABA and BBA. The differences in the 
proportions conditional on the sequences AAB and BAB, and conditional on the sequences ABB and 
BBB, are recovered as a function of the former two, as

	﻿‍

p̄(A|AAB, p) − p̄(A|BAB, p) = 1 − p̄(B|AAB, p) − (1 − p̄(B|BAB, p))

= 1 − p̄(A|BBA, 1 − p) − (1 − p̄(A|ABA, 1 − p))

= p̄(A|ABA, 1 − p) − p̄(A|BBA, 1 − p),

and p̄(A|ABB, p) − p̄(A|BBB, p) = 1 − p̄(B|ABB, p) − (1 − p̄(B|BBB, p))

= 1 − p̄(A|BAA, 1 − p) − (1 − p̄(A|AAA, 1 − p))

= p̄(A|AAA, 1 − p) − p̄(A|BAA, 1 − p). ‍�

(20)

Bayesian model selection
We implement the Bayesian model selection (BMS) procedure described in Stephan et al., 2009. 
Given ‍M ‍ models, this procedure aims at deriving a probabilistic belief on the distribution of these 
models among the general population. This unknown distribution is a categorical distribution, param-
eterized by the probabilities of the ‍M ‍ models, denoted by ‍r = (r1, . . . , rM)‍, with ‍

∑
rm = 1‍. With a 

finite sample of data, one cannot determine with infinite precision the values of the probabilities ‍rm‍. 
The BMS, thus, computes an approximation of the Bayesian posterior over the vector ‍r‍, as a Dirichlet 
distribution parameterized by the vector ‍α = (α1, . . . ,αM)‍, i.e., the posterior distribution

	﻿‍
p(r|α) = 1

Z(α)

M∏
m=1

rαm−1
m .

‍�
(21)

Computing the parameters ‍αk‍ of this posterior makes use of the log-evidence of each model for 
each subject, i.e., the logarithm of the joint probability, ‍p(y|m)‍, of a given subject’s responses, ‍y‍, under 
the assumption that a given model, ‍m‍, generated the responses. We use the model’s maximum likeli-
hood to obtain an approximation of the model’s log-evidence, as (Balasubramanian, 1997)

	﻿‍
ln p(y|m) ≃ max

θ
[ln p(y|m, θ)] − d

2
ln N,

‍�
(22)

where ‍θ‍ denotes the parameters of the model, ‍p(y|m, θ)‍ is the likelihood of the model when parame-
terized with ‍θ‍, ‍d‍ is the dimension of ‍θ‍, and ‍N ‍ is the size of the data, that is, the number of responses. 

https://doi.org/10.7554/eLife.81256
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(The well-known Bayesian Information Criterion Schwarz, 1978 is equal to this approximation of the 
model’s log-evidence, multiplied by ‍−1/2‍.)

In our case, there are ‍M = 8‍ models, each with ‍d = 2‍ parameters: ‍θ = (λ,κ)‍. The posterior distribu-
tion over the parameters of the categorical distribution of models in the general population, ‍p(r|α)‍, 
allows for the derivation of several quantities of interest; following Stephan et al., 2009, we derive 
two types of quantities. First, given a family of models, that is, a set ‍M = {mi}‍ of different models (for 
instance, the prediction-cost models, or the Bernoulli-observer models), the expected probability of 
this class of model, that is, the expected probability that the behavior of a subject randomly chosen in 
the general population follows a model belonging to this class, is the ratio

	﻿‍

∑
m∈M αm∑K
m=1 αm

.
‍�

(23)

We compute the expected probability of the precision-cost models (and the complementary prob-
ability of the unpredictability-cost models), and the expected probability of the Bernoulli-observer 
models (and the complementary probability of the Markov-observer models; see Results).

Second, we estimate, for each family of models ‍M‍, the probability that it is the most likely, i.e., the 
probability of the inequality

	﻿‍

∑
m∈M

rm > 1/2,
‍�

(24)

which is called the ‘exceedance probability’. We compute an estimate of this probability by sampling 
one million times the Dirichlet belief distribution (Equation 21), and counting the number of samples 
in which the inequality is verified. We estimate in this way the exceedance probability of the precision-
cost models (and the complementary probability of the unpredictability-cost models), and the 
exceedance probability of the Bernoulli-observer models (and the complementary probability of the 
Markov-observer models; see Results).

Unpredictability cost for Markov observers
Here we derive the expression of the unpredictability cost for Markov observers as a function of the 
elements of the parameter vector ‍q‍. For an observer of Markov order 1 (‍m = 1‍), the vector ‍q‍ has 
two elements, which are the probability of observing A at a given trial conditional on the preceding 
outcome being A, and the probability of observing A at a given trial conditional on the preceding 
outcome being B, which we denote by ‍qA‍ and ‍qB‍, respectively. The Shannon entropy, ‍H(X; q)‍, implied 
by the vector ‍q‍, is the average of the conditional entropies implied by each conditional probability, 
i.e.,

	﻿‍ H(X; q) = pBH(X; qB) + pAH(X; qA),‍� (25)

where ‍pA‍ and ‍pB‍ are the unconditional probabilities of observing A and B, respectively (see below), 
and

	﻿‍ H(X; qX) = −qX ln qX − (1 − qX) ln(1 − qX),‍� (26)

where ‍X ‍ is A or B.
The unconditional probabilities ‍pA‍ and ‍pB‍ are functions of the conditional probabilities ‍qA‍ and ‍qB‍. 

Indeed, at trial ‍t + 1‍, the marginal probability of the event ‍xt+1 = A‍, ‍P(xt+1 = A)‍, is a weighted average 
of the probabilities of this event conditional on the preceding stimulus, ‍xt‍, as given by the law of total 
probability:

	﻿‍ P(xt+1 = A) = P(xt+1 = A|xt = A)P(xt = A) + P(xt+1 = A|xt = B)P(xt = B),‍� (27)

i.e.

	﻿‍ pA = qApA + qB(1 − pA).‍� (28)

Solving for ‍pA‍, we find:

	﻿‍
pA = qB

1 + qB − qA
, and pB = 1 − pA = 1 − qA

1 + qB − qA
.
‍� (29)

https://doi.org/10.7554/eLife.81256
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The entropy ‍H(X; q)‍ implied by the vector ‍q‍ is obtained by substituting these quantities in Equation 
25.

Similarly, for ‍m = 2‍ and 3, the ‍2m‍ elements of the vector ‍q‍ are the parameters ‍qij‍ and ‍qijk‍, respec-
tively, where ‍i, j, k ∈ {A, B}‍, and where ‍qij‍ is the probability of observing A at a given trial conditional 
on the two preceding outcomes being the sequence ‘‍ij‍’, and ‍qijk‍ is the probability of observing A 
at a given trial conditional on the three preceding outcomes being the sequence ‘‍ijk‍’. The Shannon 
entropy, ‍H(X; q)‍, implied by the vector ‍q‍, is here also the average of the conditional entropies implied 
by each conditional probability, as

	﻿‍
H(X; q) =

∑
ij

pijH(X; qij), for m = 2,
‍�

(30)

	﻿‍
and H(X; q) =

∑
ijk

pijkH(X; qijk), for m = 3,
‍�

(31)

where ‍pij‍ and ‍pijk‍ are the unconditional probabilities of observing the sequence ‘‍ij‍’, and of observing 
the sequence ‘‍ijk‍’, respectively. These unconditional probabilities verify a system of linear equations 
whose coefficients are given by the conditional probabilities. For instance, for ‍m = 2‍, we have the 
relation

	﻿‍

P(xt = A, xt+1 = A) = P(xt−1 = A, xt = A, xt+1 = A) + P(xt−1 = B, xt = A, xt+1 = A)

= P(xt−1 = A, xt = A)P(xt+1 = A|xt−1 = A, xt = A)

+P(xt−1 = B, xt = A)P(xt+1 = A|xt−1 = B, xt = A)

,

‍�

(32)

i.e.,

	﻿‍ pAA = pAAqAA + pBAqBA.‍� (33)

The system of linear equations can be written as

	﻿‍




pAA

pAB

pBA

pBB




=




qAA 0 qBA 0

1 − qAA 0 1 − qBA 0

0 qAB 0 qBB

0 1 − qAB 0 1 − qBB







pAA

pAB

pBA

pBB




.

‍�

(34)

The solution is the eigenvector corresponding to the eigenvalue equal to 1 of the matrix in the 
equation above, with the additional constraint that the unconditional probabilities must sum to 1, i.e., 

‍

∑
ij

pij = 1
‍
. We find:

	﻿‍
pBB =

(
1 − 2qBB

1 − qAB
+ qBA

1 − qAA

qBB
1 − qAB

)−1

‍ �

	﻿‍
pBA = qBB

1 − qAB
pBB,

‍�
	﻿‍ pAB = pBA,‍�

	﻿‍
and pAA = qBA

1 − qAA

qBB
1 − qAB

pBB.
‍�

For ‍m = 3‍, we find the relations:

	﻿‍
pBBA = pBBB

qBBB
1 − qABB

,
‍�

	﻿‍
pBAB = pBBB

qBBB
1 − qABB

1 − qBBA(1 − qAAB) − qABAqAAB
1 − qBAB(1 − qABA) − qABAqAAB

,
‍�

	﻿‍
pBAA = pBAB

qABAqBAB
1 − qABAqAAB

+ pBBA
qBBA

1 − qABAqAAB
,
‍�

	﻿‍ pAAB = pBAA,‍�

	﻿‍ pABA = pBAB + pBAA − pBBA,‍�

https://doi.org/10.7554/eLife.81256
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	﻿‍ pAAB = pBAA,‍�

	﻿‍
and pAAA = pBAA

qBAA
1 − qAAA

.
‍�

Together with the normalization constraint ‍Σijkpijk = 1‍, these relations allow determining the eight 
unconditional probabilities ‍pijk‍, and thus the expression of the Shannon entropy.
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Appendix 1

Stability of subjects’ behavior throughout the experiment

a b

Appendix 1—figure 1. Subjects’ behavior in the first and second halves of the task. (a) Proportion of predictions A 
as a function of the stimulus generative probability, conditional on observing A (blue lines) or B (orange lines), and 
unconditional (grey lines), in the first half of the experiment (solid lines) and in the second half (dashed lines). Filled 
circles indicate p-values of Fisher’s exact test (of the equality of the proportions in the first and second halves, with 
Bonferroni-Holm-Šidák correction) below .05. (b) Difference between the proportions of predictions A conditional 
on an A, and conditional on a B, in the first half of the experiment (red circles), and in the second half (dark-red 
diamonds). The p-values of Fisher’s exact tests (of equality of the conditional proportions, i.e., ‍̄p(A|A) = p̄(A|B)‍), 
with Bonferroni-Holm-Šidák correction, are all below 1e-6. Bars indicate the standard error of the mean.

To validate the assumption that we capture, in our experiment, the ‘stationary’ behavior of 
subjects, we compare their responses in the first half of the task (first 100 trials) to their responses 
in the second half (last 100 trials). We find that the unconditional proportions of prediction A in 
these two cases are not significantly different, for most values of the stimulus generative probability. 
The sign of the difference (regardless of its statistical significance) implies that the proportions of 
predictions A in the second half of the experiment are slightly closer to 1 when the probability of the 
stimulus A is greater than 0.5; which would mean that the responses of subjects are slightly closer 
to optimality, in the second half of the experiment (Appendix 1—figure 1a, grey lines). Regarding 
the sequential effects, we also obtain very similar behaviors in the first and second halves of the 
experiment (Appendix 1—figure 1). We conclude that for our analysis it is reasonable to assume 
that the behavior of subjects is stationary throughout the task.

Robustness of the model fitting
To evaluate the ability of the model-fitting procedure to correctly identify the model that generated 
a given set of responses, we compute a confusion matrix of the eight models. For each model, 
we simulate 200 runs of the task (each with 200 passive trials followed by 200 trials in which a 
prediction is obtained), with values of ‍λ‍ and ‍κ‍ close to values typically obtained when fitting the 
subjects’ responses (for prediction-cost models, ‍λ ∈ {0.03, 0.7, 2, 15}‍; for unpredictability-cost 
models, ‍λ ∈ {0.7, 2}‍; and ‍κ ∈ {0.7, 1.5, 2}‍ for both families of models). We then fit each of the eight 
models to each of these simulated datasets, and count how many times each model best fit each 
dataset (Appendix 1—figure 2a). To further test the robustness of the model-fitting procedure, we 
randomly introduce errors in the simulated responses: for 10% of the responses, randomly chosen 
in each dataset, we substitute the response by its opposite (i.e., B for A, and A for B), and compute 
a confusion matrix using these new responses (Appendix 1—figure 2b). In both cases, the model-
fitting procedure identifies the correct model a majority of times (i.e., the best-fitting model is the 
model that generated the data; Appendix 1—figure 2).

Finally, to examine the robustness of the weight of the cost, ‍λ‍, we consider for each subject 
its best-fitting model in each family (the precision-cost family and the unpredictability-cost family), 
and we fit separately each model to the subject’s responses obtained in trials in which the stimulus 

https://doi.org/10.7554/eLife.81256
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generative probability was medium (‍p ∈ {.3, .35, .4, .45, .5, .55, .6, .65, .7}‍) and those in which it was 
extreme (‍p ∈ {.05, .1, .15, .2, .25, .75, .8, .85, .9, .95}‍). The Appendix 1—figure 3 shows the correlation 
between the best-fitting parameters obtained in these two cases.

Appendix 1—figure 2. Model-fitting confusion matrix. (a) For each row models (‘true model’), percentage of 
simulated datasets of 200 responses that were best fitted by column models (‘best-fitting model’). Example: when 
fitting data generated by the precision-cost model with ‍m = 3‍, the best-fitting model was the correct model on 
98% of the fits, and the precision-cost model with ‍m = 2‍ on 2% of the fits. (b) Same as (a), with 10% of responses 
(randomly chosen in each simulated dataset) replaced by the opposite responses.

a b

Appendix 1—figure 3. Stability of the cost-weight parameter across medium and extreme values of the stimulus 
generative probability. Best-fitting parameters of individual subjects when fitting the data obtained in trials with 
extreme values of the stimulus generative probability (i.e., ‍p‍ or ‍1 − p‍ in ‍{.75, .8, .85, .9, .95}‍), plotted against the 
best-fitting parameters when fitting the data obtained in trials with medium values of the stimulus generative 
probability (i.e., ‍p‍ or ‍1 − p‍ in ‍{.5, .55, .6, .65, .7}‍), with (a) precision-cost models, and (b) unpredictability-
cost models. Purple dots: subjects best-fitted by prediction-cost models. Green dots: subjects best-fitted by 
unpredictability-cost models. The plots are in log-log scale, except below ‍10−3‍ (a) and ‍10−1‍ (b), where the scale is 
linear (allowing in particular for the value 0 to be plotted.) For the precision-cost models, we plot the inverse of the 
characteristic decay time, ‍ln(1 + λ)‍. The grey line shows the identity function.

https://doi.org/10.7554/eLife.81256
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Distribution of subjects’ BICs

Appendix 1—figure 4. Distribution of subjects’ BICs. (Left) Box-and-whisker plots showing the 5th and 95th 
percentiles (whiskers), the first and third quartiles (box), and the median (vertical line) of the BICs (across subjects) 
of the unpredictability-cost models (green boxes) and of the precision-cost models (purple boxes), fitted on the 
subjects best-fitted by the unpredictability-cost models (first two rows) and on the subjects best-fitted by the 
precision-cost models (last two rows). (Right) Box-and-whisker plots (same quantiles) showing the distribution of 
the difference, for each subject, between the BIC of the best model in the family that does not best fit the subject, 
and the BIC of the best-fitting model; for the subjects best-fitted by the unpredictability-cost models (top box) 
and for the subjects best-fitted by the precision-cost models (bottom box). The unpredictability-cost models, 
when fitted to the responses of the subjects best-fitted by the precision-cost models (bottom box), yield larger 
differences in the BIC with the best-fitting models, than the precision-cost models when fitted to the responses of 
the subjects best-fitted by the unpredictability-cost models (top box). This suggests that the precision-cost models 
are better than the unpredictability-cost models at capturing the responses of the subjects that they do not best 
fit.

Subjects’ sequential effects — tree representation

Appendix 1—figure 5. Composition of sequential effects in subjects’ responses. Proportion of predictions A 
conditional on sequences of up to three past observations, as a function of the stimulus generative probability. See 
Figure 6d.

https://doi.org/10.7554/eLife.81256


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Prat-Carrabin et al. eLife 2024;13:e81256. DOI: https://doi.org/10.7554/eLife.81256 � 40 of 42

Subjects’ sequential effects — unpooled data
As mentioned in the main text, we pool together the predictions that correspond, in different 
blocks of trials, to either event (left or right), as long as these events have the same probability. The 
Appendix 1—figure 6, below, is the same as Figure 2, but without such pooling. Given a stimulus 
generative probability, ‍p‍, all the subjects experience one (and only one) block of trials in which either 
the event ‘right’ or the event ‘left’ had probability ‍p‍. For one group of subjects the ‘right’ event has 
probability ‍p‍ and for the group of remaining subjects it is the ‘left’ event that has probability ‍p‍. The 
responses of these subjects are not pooled together in Appendix 1—figure 6, while they were in 
Figure 2. This also applies for any other stimulus generative probability, ‍p

′
‍. However, we note that 

the two groups of subjects for whom ‍p
′
‍ was the probability of a ‘right’ event or a ‘left’ event are not 

the same as the two groups just mentioned in the case of the probability ‍p‍. As a result, from one 
proportion shown in Appendix 1—figure 6 to another, the underlying group of subjects changes. In 
Figure 2, each proportion is computed with the responses of all the subjects. This illustrates another 
advantage of the pooling that we use in the main text.

a b

Appendix 1—figure 6. Sequential effects in subjects’ responses. As Figure 2, but without pooling together the 
rightward and leftward predictions from different block of trials in which the corresponding stimuli have the same 
probability. See main text.

https://doi.org/10.7554/eLife.81256
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Subjects’ response times

Appendix 1—figure 7. Subjects’ response times. Average response times conditional on having observed 
a stimulus A (blue line), a stimulus B (orange line), and unconditional (grey line), as a function of the stimulus 
generative probability. The stars indicate that the p-values below 0.05 of the ‍t ‍-tests of equality between the 
response times after an A and after a B. The subjects seem slower after observing the less frequent stimulus (e.g., 
B, when ‍p > .5‍).

https://doi.org/10.7554/eLife.81256
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Across-subjects results

a b

c d e

Appendix 1—figure 8. Subjects’ sequential effects — across-subjects analysis. The statistics used for this figure 
are obtained by computing first the proportions of predictions A for each subject, and then computing the across-
subject averages and standard errors of the mean (instead of pooling together the responses of all the subjects). 
(a,b) As in Figure 2, with across-subjects statistics. (c,d,e) As in Figure 6a, b and c, with across-subjects statistics. 
The filled circles indicate that the p-value of the Student’s t-test is below 0.05, and the filled squares indicate that 
the p-value with Bonferroni-Holm-Šidák correction is below 0.05.

https://doi.org/10.7554/eLife.81256
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